connected to a Univac 1108 computer, with the XRAY system (1970).

The authors thank Professor A. Cañas-Rodriguez for suggesting the study and supplying the crystals, Professor A. Conde for helpful discussions and the staff of the Instituto 'Rocasolano' CSIC (Madrid), especially Dr F. Cano, for collecting the diffractometer data.

The present work is part of a wider research project supported by the Government through the Comisión Asesora de Investigación Científica y Técnica.

References

BORKAKOTI, N., LINDLEY, P. F., MOSS, D. S. & PALMER, R. A. (1978). Acta Cryst. B34, 3431-3433.

- CAÑAS-RODRIGUEZ, A. & LEEMING, P. R. (1969). Nature (London), 223, 75-76.
- International Tables for X-ray Crystallography (1974). Vol. IV, pp. 72–98. Birmingham: Kynoch Press.
- Iтаі, А., Іітака, Ү. & Киво, А. (1978). Acta Cryst. B34, 3775–3777.
- MAIN, P., LESSINGER, L., WOOLFSON, M. M., GERMAIN, G.
 & DECLERCQ, J. P. (1977). MULTAN 77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain-la-Neuve, Belgium.
- SAKAKI, T., SOGO, A., WAKAHARA, A., KANAI, T., FUJIWARA, T. & TOMITA, K. (1976). *Acta Cryst.* B32, 3235–3242.
- XRAY system (1970). Edited by J. M. STEWART, F. A. KUNDELL & J. C. BALDWIN. Computer Science Center, Univ. of Maryland.

Acta Cryst. (1980). B36, 2709-2715

Structures de Trois Nouveaux Limonoïdes Cytotoxiques: Aphanastatine, Amoorastatine, Hydroxy-12 Amoorastatine

PAR BERNADETTE ARNOUX ET CLAUDINE PASCARD

Institut de Chimie des Substances Naturelles, CNRS, 91190 Gif sur Yvette, France

(Reçu le 3 septembre 1979, accepté le 11 juin 1980)

Abstract

The crystal structures of three novel compounds extracted from Aphanamixis grandifolia Bl. have been determined from three-dimensional X-ray diffraction data. Crystal data are as follows: for aphanastatin. $C_{35}H_{46}O_{13}, a = 19.233(5), b = 14.207(5), c =$ 12.364(5) Å, space group $P2_12_12_1$, Z = 4, V = $3378 \cdot 38 \text{ Å}^3$, $d_x = 1 \cdot 32 \text{ Mg m}^{-3}$, for amoorastatin, $C_{28}H_{36}O_9$, a = 7.781(6), b = 12.81(1), c =12.99 (2) Å, $\beta = 91.5$ (1)°, space group $P2_1$, Z = 2, $V = 1294.3 \text{ Å}^3$, $d_r = 1.37 \text{ Mg m}^{-3}$ and, for 12hydroxyamoorastatin, $C_{28}H_{36}O_{10}$, a = 7.781 (8), b =12.85 (1), c = 12.98 (2) Å, $\beta = 92.1$ (1)°, space group $P2_1, Z = 2, V = 1311 \cdot 2 \text{ Å}^3, d_x = 1 \cdot 39 \text{ Mg m}^{-3}$. The final R values are respectively 0.050, 0.052 and 0.068. The three molecules belong to the triterpene group with a furan ring and a hemiacetal bridge between C(19)and C(28). All three compounds show significant antineoplastic activity.

Introduction

On a pu extraire d'une plante de la famille des Méliacées Aphanamixis grandifolia, quatre substances

0567-7408/80/112709-07\$01.00

amères. Trois de ces composés possèdent une forte activité cytotoxique: l'aphanastatine (Polonsky, Varon, Arnoux, Pascard, Pettit, Schmidt & Lange, 1978), l'amoorastatine (Polonsky, Varon, Arnoux, Pascard, Pettit & Schmidt, 1978), et l'hydroxy-12 amoorastatine (Polonsky, Varon, Marazano, Arnoux, Pettit, Schmidt & Ochi, 1979). La très faible quantité de produit isolé empêchait toute étude structurale par les voies spectroscopiques habituelles ou par voie chimique. Nous avons donc entrepris la détermination par diffraction des rayons X des structures des trois composés actifs.

Partie expérimentale

Les cristaux des différents composés ont été obtenus avec beaucoup de difficultés par Polonsky *et al.* (1978). Les principales données expérimentales sont résumées dans l'*Abstract* et le Tableau 1. Les intensités ont été mesurées sur un diffractomètre automatique Philips PW1100 par la méthode de balayage $\omega/2\theta$ et corrigées des facteurs de Lorentz et de polarisation. Aucune correction d'absorption n'a été effectuée.

© 1980 International Union of Crystallography

Tableau 1. Données expérimentales

	Aphanastatine	Amoorastatine	Hydroxy-12 amoorastatine
Nombre de réflexions mesurées	3448	2400	3186
Nombre de réflexions observées	2060	1848	1552
λ Larneur balavage	1,5418 A	0.7107 A	0.7107 A
Vitesse d'enregistrement $R = \sum F_n - F_c / \sum F_n$	0.03° s ' 0.050	0,05° s ' 0,052	0.03° s ⁻¹ 0,068

Résolution des structures

Aphanastatine

En l'absence de tout renseignement structural, la structure cristalline a été résolue par MULTAN (Germain, Main & Woolfson, 1971). La série de Fourier correspondant à la meilleure figure de mérite a permis de localiser difficilement 15 pics pouvant correspondre à l'enchaînement de deux cycles hexagonaux plus un pont de trois atomes au-dessus de ces cycles. Plusieurs recyclages E ont permis de localiser 24 atomes sur les 48 atomes non-hydrogène de la molécule. Pour obtenir toute la molécule, il fallut encore effectuer plusieurs recyclages F_o et même affiner les positions atomiques dont nous étions sûrs, avant de pouvoir localiser le furanne et la chaîne α -méthylbutyrique. La structure est montrée dans la Fig. 1.

Fig. 1. Vue en perspective de l'aphanastatine.

Amoorastatine

La comparaison des spectres de RMN du proton de l'aphanastatine et de l'amoorastatine indique que ces deux composés possèdent le même enchaînement de cycles A, B, C, D et hémiacétalique. Le squelette de

Fig. 2. Vue en perspective de l'amoorastatine.

Fig. 3. Vue en perspective de l'hydroxy-12 amoorastatine.

l'amoorastatine étant supposé connu, nous avons introduit ces indications structurales dans le programme de recherche de Patterson mis au point par Braun, Hornstra & Leenhouts (1969). La densité électronique correspondant à la meilleure figure de mérite de ce programme a fait apparaître tous les atomes. Une vue tridimensionnelle de la molécule est donnée dans la Fig. 2.

Hydroxy-12 amoorastatine

Etant en possession de deux produits ayant le même squelette, il a paru intéressant de faire également la structure aux rayons X de ce troisième composé afin d'en avoir les données géométriques permettant de comparer ces trois molécules entre elles et d'essayer d'étudier les déformations des cycles apportées par les substituants.

L'enregistrement a révélé une quasi-identité des paramètres entre la maille de l'amoorastatine et celle de l'hydroxy-12 amoorastatine. Un rapide survol des intensités a montré également une grande ressemblance entre les deux jeux des facteurs de structure. La méthode de résolution a été celle du remplacement isomorphe. La densité calculée en introduisant les coordonnées atomiques de l'amoorastatine dans le calcul des facteurs de structure a donné tous les atomes y compris l'hydroxyle en 12. La Fig. 3 montre la stéréochimie de la molécule.

Affinement

Les différents paramètres ont été affinés par la méthode des moindres carrés. Les facteurs de diffusion utilisés sont ceux de Doyle & Turner (1968) pour C et O et les valeurs de Stewart, Davidson & Simpson (1965) pour les atomes d'hydrogène.

Nous avons effectué une série de cycles sur les coordonnées et les paramètres de vibration isotrope après avoir introduit dans le calcul les atomes d'hydrogène qui pouvaient être calculés à leur position théorique (C-H = 1,0 Å, C-C-H = 109 ou 120°). A ce stade une série 'différence' a permis de localiser une molécule d'eau dans l'amoorastatine ainsi que dans l'hydroxy-12 amoorastatine. Les facteurs d'agitation thermique anisotrope ont été alors introduits pour tous les atomes à l'exception des atomes d'hydrogène. La majorité des atomes d'hydrogène a été localisée par série 'différence' et les coordonnées introduites dans le calcul avec un facteur de température égal à celui de l'atome porteur. Leurs coordonnées n'ont pas été affinées. Le facteur R final $(R = \sum ||F_{o}| - |F_{c}||)/|$ $\sum |F_{o}|$) est de 0,050 pour l'aphanastatine, de 0,052

pour l'amoorastatine et de 0,068 pour l'hydroxy-12 amoorastatine. Les coordonnées sont données dans le Tableau 2.*

Description des molécules

Les distances interatomiques et les angles de valence sont groupés dans les Tableaux 3 et 4.

Ces trois composés appartiennent au groupe des terpènes. On se trouve en présence pour les trois

^{*} Les listes des facteurs de structure, des paramètres thermiques anisotropes et des coordonnées des atomes d'hydrogène ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 35503: 33 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Fig. 4. Angles de torsion endocycliques (°). L'écart-type moyen est de 2°. (a) L'aphanastatine, (b) l'amoorastatine, (c) l'hydroxy-12 amoorastatine. Les angles marqués d'une astérisque appartiennent au cycle hémiacétalique.

Tableau 2. Coordonnées atomiques $(\times 10^4)$ des atomes non-hydrogène avec écarts-type entre parenthèses

		x	у	Ζ	B (Å ²)		x	у	Ζ	B (Å ²)
$ \begin{array}{c} C(1) & 3893 (2) & 9213 (4) & 7313 (4) & 2.63 & C(16) & 7216 (7) & 8459 (5) & 7247 (4) & 3.3 \\ C(2) & 4557 (2) & 8554 (4) & 7419 (4) & 2.83 & C(17) & 9161 (7) & 8248 (4) & 7247 (4) & 3.3 \\ C(3) & 5046 (2) & 8729 (4) & 6437 (5) & 3.17 & C(18) & 9071 (7) & 6698 (4) & 8419 (4) & 3.4 \\ C(4) & 5118 (2) & 9725 (4) & 5924 (4) & 3.00 & C(19) & 9095 (7) & 3523 (4) & 5681 (4) & 3.2 \\ C(5) & 4388 (2) & 10150 (4) & 5133 (5) & 3.33 & C(21) & 10071 (0) & 9210 (6) & 8932 (6) & 5.3 \\ C(7) & 3648 (3) & 11438 (4) & 4963 (5) & 3.48 & C(22) & 12051 (9) & 9149 (6) & 8731 (6) & 5.1 \\ C(19) & 3024 (2) & 10235 (3) & 6917 (4) & 2.26 & C(27) & 6102 (9) & 1213 (6) & 9426 (5) & 4.4 \\ C(10) & 4024 (2) & 10235 (4) & 6917 (4) & 2.26 & C(22) & 7151 (7) & 1535 (5) & 5949 (6) & 4.1 \\ C(12) & 2183 (2) & 11448 (4) & 661 (5) & 3.10 & C(39) & 740 (7) & 5824 (5) & 5799 (4) & 4.6 \\ C(13) & 1952 (2) & 11448 (4) & 661 (5) & 3.10 & C(39) & 740 (7) & 5824 (5) & 5799 (4) & 4.6 \\ C(13) & 1952 (2) & 11448 (4) & 661 (5) & 3.10 & C(39) & 740 (7) & 5824 (5) & 5799 (4) & 3.6 \\ C(14) & 2542 (2) & 11972 (4) & 5900 (5) & 2.95 & O(1) & 10058 (4) & 3816 (3) & 8492 (3) & 3.3 \\ C(16) & 1471 (3) & 12439 (6) & 5011 (6) & 4.25 & O(2) & 7499 (5) & 2167 (3) & 866 (3) & 3.3 \\ C(16) & 1471 (3) & 12439 (6) & 5051 (6) & 5.15 & (7)7 & 7338 (6) & 7476 (3) & 5768 (3) & 3.3 \\ C(19) & 4476 (2) & 10732 (4) & 776 (5) & 3.39 & O(7) & 7355 (6) & 5441 (3) & 5976 (3) & 3.4 \\ C(21) & 4476 (2) & 10732 (4) & 7555 (6) & 5.070 & 7353 (6) & 7476 (3) & 5768 (3) & 3.2 \\ C(22) & 2449 (13) & 1521 (7) & 5555 (6) & 5.09 & 008 (8) & 11492 (9) & 706 (8) & 5973 (3) & 3.2 \\ C(22) & 537 (4) & 11052 (7) & 7355 (6) & 5.157 & (7) & 7376 (3) & 336 (6) \\ C(21) & 1173 (1) & 11581 (7) & 5555 (6) & 5.070 & 7358 (6) & 5.157 & 4388 (6) & 3.977 (3) & 3.3 \\ C(21) & -357 (4) & 11052 (6) & 7256 (6) & 5.157 & (7) & 4388 (6) & 3.976 (3) & 3.3 \\ C(22) & -357 (4) & 11052 (6) & 7256 (6) & 3.157 & (7) & 7376 (3) & 3596 (3) & 3.2 \\ C(23) & 7364 (6) & 7352 (6) & 7575 (6) & 3.37 & (7) & 3356 (6) & 7176 (7) & 3456 (6) & $	(a) Aphai	nastatine				C(15)	6428 (7)	7586 (5)	6729 (5)	4.3
$ \begin{array}{c} C(2) & 4557 (2) & 8654 (4) & 7419 (4) & 2.83 & C(17) & 9161 (7) & 8248 (4) & 74247 (4) & 3.3 \\ C(3) & 5046 (2) & 8729 (4) & 6437 (5) & 1.1 & C(18) & 9071 (7) & 6698 (4) & 8419 (4) & 3.4 \\ C(4) & 5118 (2) & 9725 (4) & 9982 (4) & 3.00 & C(19) & 9095 (7) & 3232 (4) & 5681 (4) & 3.2 \\ C(5) & 4388 (3) & 11050 (4) & 5133 (5) & 3.33 & C(22) & 10079 (10) & 9210 (6) & 8932 (6) & 5.3 \\ C(7) & 648 (3) & 11435 (4) & 4966 (5) & 3.45 & C(22) & 1025 (9) & 9149 (6) & 7761 (5) & 5.2 \\ C(8) & 3310 (2) & 11678 (4) & 6063 (4) & 2.68 & C(23) & 12720 (9) & 9652 (6) & 8932 (6) & 4.7 \\ C(10) & 404 (2) & 10253 (3) & 6071 (4) & 2.26 & C(230 & 7151 (9) & 1285 (5) & 9949 (4) & 3.4 \\ C(11) & 2866 (2) & 10987 (4) & 7792 (5) & 2.85 & C(230 & 7151 (9) & 1285 (5) & 7297 (4) & 3.6 \\ C(13) & 1953 (2) & 11448 (4) & 7661 (5) & 3.03 & C(230 & 4700 (7) & 1532 (5) & 7394 (5) & 3.3 \\ C(13) & 1955 (2) & 11468 (4) & 6501 (5) & 3.10 & C(30) & 7410 (7) & 5542 (5) & 7379 (5) & 3.6 \\ C(14) & 2542 (2) & 11992 (4) & 5900 (5) & 2.25 & O(11) & 10058 (4) & 3816 (3) & 8496 (3) & 3.3 \\ C(15) & 2233 (3) & 12347 (5) & 5021 (6) & 4.25 & O(2) & 7499 (5) & 2167 (3) & 8866 (3) & 3.3 \\ C(15) & 2233 (3) & 12347 (5) & 5021 (6) & 4.25 & O(2) & 7499 (5) & 2164 (3) & 5974 (4) & 5.2 \\ C(18) & 144 (2) & 1048 (4) & 6233 (5) & 1.90 & O(4) & 8856 (5) & 2126 (3) & 5674 (3) & 3.9 \\ C(11) & 1315 (3) & 12106 (4) & 6233 (5) & 1.90 & O(4) & 1825 (6) & 5.10 & 1413 (3) & 5974 (3) & 3.6 \\ C(21) & -371 (4) & 1042 (9) & 7264 (7) & 1.204 (0) & 077 & 733 (5) & 7474 (4) & 5784 (3) & 3.6 \\ C(21) & -371 (4) & 1042 (9) & 7264 (7) & 3.30 (O(7) & 733 (6) & 744 (4) & 5784 (3) & 3.6 \\ C(21) & -374 (4) & 1332 (10) & 7564 (7) & 3.597 (4) & 3.50 & 1747 (4) & 3.563 (3) & 4.6 \\ C(21) & -371 (4) & 1034 (4) & 776 (5) & 3.57 & (7) & 1379 (6) & 3.57 & (7) & 1379 (6) & 3.57 & (7) & 1379 (6) & 3.57 & (7) & 1379 (6) & 3.57 & (7) & 1379 (6) & 3.57 & (7) & 1379 (6) & 3.57 & (7) & 1379 (6) & 3.57 & (7) & 1379 (6) & 3.57 & (7) & 1379 (6) & 3.57 & (7) & 1379 (6) & 3.57 & (7) & 1379 (6) & 3.57 & (7) & 1379 (6) $	C(1)	3893 (2)	9213 (4)	7313 (4)	2.63	C(16)	7219 (7)	8459 (5)	7349 (5)	4.4
$ \begin{array}{c} C(3) & 5046 (2) & 8729 (4) & 6437 (5) & 3.17 & C(18) & 9071 (7) & 6698 (4) & 8419 (4) & 3.4 \\ C(4) & 5118 (2) & 9725 (4) & 5982 (4) & 3.00 & C(19) & 9095 (7) & 3222 (4) & 5681 (4) & 3.2 \\ C(5) & 4388 (2) & 10150 (3) & 5799 (4) & 2.42 & C(20) & 10362 (8) & 8842 (5) & 5681 (4) & 3.2 \\ C(6) & 4383 (3) & 11050 (4) & 5133 (5) & 3.33 & C(21) & 10079 (10) & 9210 (6) & 8932 (6) & 8532 (6) \\ C(18) & 310 (2) & 11678 (4) & 4068 (5) & 3.45 & C(23) & 1270 (9) & 9622 (6) & 8855 (6) & 4.7 \\ C(9) & 3112 (2) & 10764 (4) & 6758 (4) & 2.68 & C(23) & 1270 (9) & 9622 (6) & 8555 (6) & 4.7 \\ C(10) & 4024 (2) & 1023 (6) & 9174 (4) & 2.56 & C(23) & 1270 (9) & 9622 (6) & 8556 (6) & 4.7 \\ C(10) & 4024 (2) & 1023 (6) & 9174 (4) & 2.56 & C(23) & 1100 (9) & 2123 (6) & 10426 (5) & 4.9 \\ C(11) & 286 (2) & 11448 (4) & 6758 (4) & 2.36 & C(23) & 1749 (8) & 1806 (5) & 3549 (5) & 4.1 \\ C(13) & 1952 (2) & 11448 (4) & 6701 (5) & 3.00 & C(30) & 7410 (7) & 1532 (5) & 3549 (5) & 4.1 \\ C(14) & 2342 (2) & 11492 (4) & 5900 (5) & 2.95 & O(1) & 10058 (4) & 8816 (3) & 8492 (3) & 3.3 \\ C(16) & 1471 (3) & 12439 (5) & 5061 (6) & 4.50 & O(3) & 6514 (5) & 614 (4) & 9778 (3) & 3.6 \\ C(17) & 115 (3) & 12409 (4) & 6027 (5) & 3.90 & 0(4) & 8856 (5) & 2126 (3) & 5764 (3) & 3.9 \\ C(18) & 1184 (2) & 100486 (4) & 6027 (5) & 3.94 & 0(5) & 7125 (6) & 7331 (4) & 5765 (3) & 4.6 \\ C(21) & 1170 1 (5) & 6358 (6) & 5.15 & O(7) & 7339 (5) & 7476 (3) & 376 (3) & 3.8 \\ C(20) & 03 (3) & 11701 (5) & 6358 (6) & 5.15 & O(7) & 7339 (5) & 7476 (3) & 376 (3) & 3.8 \\ C(20) & 03 (3) & 11701 (5) & 6358 (6) & 5.15 & O(7) & 7339 (5) & 7476 (3) & 376 (3) & 3.8 \\ C(21) & 1173 & 1158 (1) & 2764 (7) & 12.01 & 0.99 & 11629 (4) & 4908 (3) & 5756 (3) & 4.6 \\ C(21) & 173 & 11181 (1) & 7254 (7) & 12.01 & 0.99 & 11629 (4) & 4908 (3) & 376 (3) & 3.8 \\ C(20) & 03 (3) & 11701 (5) & 6558 (6) & 5.15 & O(7) & 7339 (6) & 7374 (6) & 3.25 \\ C(13) & 760 (6) & 6755 (7) & 3492 (10) & 13.24 \\ C(13) & 760 (6) & 6755 (7) & 3492 (10) & 13.24 \\ C(23) & 590 (3) & 1990 (4) & 436 (6) & 4202 & C(3) & 2992 (11) & -33$	C(2)	4557 (2)	8654 (4)	7419 (4)	2,83	C(17)	9161 (7)	8248 (4)	7247 (4)	3,3
C(4) 5118 (2) 9725 (4) 5982 (4) 3.00 C(9) 9095 (7) 2322 (4) 5681 (4) 3.2 C(5) 4383 (2) 10150 (4) 5133 (5) 3.33 C(21) 10079 (10) 9210 (6) 7761 (5) 5.2 C(7) 3648 (3) 11435 (4) 4966 (5) 3.45 C(22) 12320 (9) 944 (6) 7761 (5) 5.2 C(8) 3310 (2) 11678 (4) 6053 (4) 2.68 C(23) 12720 (9) 9652 (6) 8932 (6) 5.3 C(10) 4312 (2) 1076 (4) 6738 (4) 2.68 C(23) 12720 (9) 9652 (6) 8932 (6) 4.3 C(10) 432 (2) 1076 (4) 6738 (4) 2.68 C(23) 12720 (9) 9652 (6) 8936 (4) 3.4 C(10) 432 (2) 1076 (4) 6738 (4) 2.68 C(23) 617(7) 1315 (5) 9319 (4) 3.4 C(10) 432 (2) 1076 (4) 6738 (4) 2.68 C(23) 617(7) 1315 (5) 9319 (4) 3.4 C(11) 4326 (2) 10887 (4) 6793 (4) 2.35 C(23) 7400 (7) 5542 (5) 5779 (4) 3.6 C(13) 1955 (2) 11468 (4) 6501 (5) 3.10 C(30) 7410 (7) 5542 (5) 5979 (4) 3.6 C(14) 2542 (2) 11992 (4) 5900 (5) 2.95 O(11) 10058 (4) 3181 (6) 3892 (3) 3.3 C(15) 2233 (3) 12547 (5) 5021 (6) 4.55 O(2) 7499 (5) 2167 (3) 8866 (3) 3.3 C(15) 2233 (3) 1249 (5) 5061 (6) 4.50 O(3) 6314 (5) 641 (4) 9378 (3) 4.9 C(17) 1315 (3) 12106 (4) 6233 (5) 3.30 O(4) 8856 (5) 2126 (3) 5674 (3) 4.9 C(20) 603 (1) 1701 (5) 5556 (6) 5.13 07 (7) 733 (5) 7474 (6) 1) 5768 (3) 3.4 C(21) 114 (3) 1249 (5) 7556 (6) 5.13 07 (7) 733 (5) 7474 (6) 1) 5768 (3) 3.4 C(21) 114 (3) 1153 (1) 05556 (6) 5.13 07 (7) 733 (5) 7474 (6) 1) 5768 (3) 3.4 C(22) 114 (3) 1153 (1) 05556 (6) 5.13 07 (7) 733 (5) 7474 (6) 1) 5766 (3) 4.6 C(22) 114 (3) 1153 (2) 07556 (6) 5.4 C(23) 114 (3) 1153 (2) 07556 (6) 5.4 C(24) 237(4) 1142 (9) 726 (8) 12.3 C(14) 1267 (7) 4298 (9) 23.4 C(24) 237(4) 1352 (9) 7364 (3) 207 (7) 3.2 C(25) 1390 (6) 7425 (7) 1388 (8) 2.5 C(21) 1400 (1) 7425 (7) 1388 (6) 5.17 (2) 2400771 *2097 (7) 2298 (6) 3.0 C(23) 5599 (3) 10344 (5) 6577 (6) 3.6 C(24) 5397 (1) -7247 (7) 2478 (6) 3.0 C(25) 5599 (3) 10344 (6) 776 (6) 3.6 C(25) 5993 (3) 0134 (6) 776 (6) 3.6 C(25) 5993 (3) 1034 (6) 776 (6) 3.6 C(26) 3499 (10) -1759 (7) 3276 (7) 3276 (7) 3276 (7) 3276 (7) 3276 (7) 3276 (7) 3276 (7) 3276 (7) 3276 (7) 3276 (7) 3276 (7) 3276 (7) 3276 (7) 3276 (7) 3276 (7) 3276 (7) 3276 (7) 32	C(3)	5046 (2)	8729 (4)	6437 (5)	3,17	C(18)	9071 (7)	6698 (4)	8419 (4)	3,4
C(5) 4388 (2) 10150 (3) 5799 (4) 2,42 C(20) 10362 (8) 8842 (5) 7955 (5) 3, 3.6 C(6) 4333 (3) 11030 (4) 5133 (5) 3,33 C(21) 10079 (10) 9210 (6) 8932 (6) 5,33 C(7) 3648 (3) 11435 (4) 4968 (5) 3,45 C(22) 12035 (9) 9149 (6) 7761 (5) 5,2 C(8) 310 (2) 11678 (4) 6678 (4) 2,68 C(23) 12720 (9) 9452 (6) 856 (6) 4,7 C(9) 3312 (2) 1074 (4) 6778 (4) 2,68 C(24) 6715 (7) 1535 (5) 9519 (4) 3,4 C(10) 402 (2) 1023 (3) 6917 (4) 2,26 C (27) 6102 (9) 2123 (6) 10426 (5) 4,9 C(13) 2125 (2) 11464 (4) 6778 (4) 2,285 C(28) 7159 (8) 1803 (5) 5949 (5) 4,1 C(13) 2152 (2) 11464 (4) 6016 (5) 3,00 C (28) 7490 (7) 1852 (5) 5949 (5) 4,1 C(13) 2152 (2) 11492 (4) 5900 (5) 2,05 C (19) 7400 (4) 5181 (5) 5494 (5) 4,1 C(13) 2152 (2) 11492 (4) 5900 (5) 2,05 C (19) 7400 (4) 5181 (5) 5492 (5) 1,1 203 (5) 5000 (6) 4,25 C (21) 71005 (4) 521 (2) 1376 (6) 733 (4) 5942 (4) 2978 (3) 4,6 C (17) 1315 (3) 12106 (4) 6223 (5) 3,00 O (4) 8856 (5) 2126 (3) 5786 (3) 4,6 C (21) 1153 (1) 2105 (4) 6023 (5) 3,00 O (4) 8856 (5) 2126 (3) 5786 (3) 4,6 C (21) 1133 1151 (7) 5555 (6) 5,555 (5) 5555 (5) 55441 (3) 5796 (3) 3,8 C (22) 663 (3) 11701 (5) 6338 (6) 5,15 O (7) 7339 (5) 7476 (3) 5766 (3) 4,6 C (21) 1173 11581 (7) 5555 (6) 6,500 O (8) 11492 (9) 9706 (5) 9756 (3) 3,3 C (22) 294 (4) 11342 (10) 7244 (7) 12,01 O (9) 11629 (4) 4968 (3) 5975 (3) 3,3 C (23) -357 (4) 1104 (29) 703 (8) 2,33 O (4') 3561 (5) 4153 (4) 9971 (1) 3,22 C (23) 256 (1) 154 (1) 154 (1) -2766 (7) 2428 (6) 2,30 C (1) 154 (1) -2766 (7) 2428 (6) 2,30 C (1) 154 (1) -2766 (7) 2428 (6) 2,30 C (1) 132 C (1) 236 (1) 1320 (1) 236 (1) 236 (1) 2370 (1) 2324 (1) 133 (2) 236 (1) 236 (1) 2397 (1) -2324 (7) 2118 (6) 2,9 C (1) 236 (1) -2326 (1) 236 (1) 2396 (1) 236 (1) 236 (1) 2370 (1) 236 (1) 2370 (1) 236 (1) 2370 (1) 2324 (2) 2351 (2) 236 (1) 2390 (1) 1320 (2) 236 (1) 2390 (1) 1320 (2) 236 (1) 2390 (1) 1320 (2) 236 (1) 2390 (1) 1320 (2) 236 (1) 2390 (1) 1320 (2) 236 (1) 2390 (1) 1320 (2) 236 (1) 2390 (1) 1320 (2) 236 (1) 2390 (1) 1320 (2) 236 (1) 2390 (1) 1320 (2) 236 (1) 2390 (1) 1320 (2) 236 (1) 1320 (2) 236 (1) 1320	C(4)	5118 (2)	9725 (4)	5982 (4)	3,00	C(19)	9095 (7)	3232 (4)	5681 (4)	3,2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	4388 (2)	10150 (3)	5799 (4)	2,42	C(20)	10362 (8)	8842 (5)	7955 (5)	3,6
C(7) 3648 (3) 11435 (4) 4968 (5) 3,45 C(22) 12053 (9) 9149 (6) 7761 (5) 5,2 C(8) 3310 (2) 11678 (4) 66738 (4) 2,68 C(23) 12720 (9) 9652 (6) 8555 (6) 4.7. C(9) 3312 (2) 10764 (4) 6758 (4) 2,68 C(23) C(26) 6715 (7) 1535 (5) 9519 (4) 3.4 C(10) 4024 (2) 10235 (3) 6917 (4) 2,26 C(27) 6102 (9) 2123 (6) 10426 (5) 4.9 C(11) 2866 (2) 10887 (4) 7792 (5) 2,85 C(28) 7159 (8) 1805 (5) 5949 (5) 4.1 C(12) 2183 (2) 11443 (4) 766 (15) 3.03 C(29) 4090 (7) 1852 (5) 5779 (4) 3.6 C(13) 1955 (2) 11468 (4) 6501 (5) 3.10 C(13) 7410 (7) 5542 (5) 5779 (4) 3.6 C(13) 1955 (2) 11468 (4) 6501 (5) 3.10 C(13) 7410 (7) 5542 (5) 5779 (4) 3.6 C(14) 2347 (5) 5021 (6) 4,450 O(3) 6514 (5) 614 (4) 9378 (3) 4.6 C(17) 1315 (3) 12106 (4) 6233 (5) 3.90 O(4) 8856 (5) 2126 (3) 5674 (3) 3.9 C(18) 1315 (3) 12106 (4) 6233 (5) 3.90 O(4) 8856 (5) 2126 (3) 5674 (3) 3.9 C(19) 4441 (2) 1045 (4) 0755 (6) 6.6 O O(7) 5346 (5) 5441 (3) 7698 (3) 3.8 C(21) 173 (3) 1181 (7) 5554 (5) 6.6 O O(7) 5306 (5) 5441 (3) 7698 (3) 3.8 C(21) 173 (3) 1181 (7) 5554 (5) 6.6 O O(7) 5356 (5) 5441 (3) 7698 (3) 3.8 C(22) 2744 (4) 11342 (10) 7254 (7) 12.01 O (8) 11629 (4) 4968 (5) 9375 (5) 3.5 C (23) -357 (4) 1104 (9) 7038 (8) 12.33 O(47) 3561 (5) 4153 (4) 9911 (3) 5.2 C(24) 2812 (3) 8412 (4) 66849 (5) 3.33 C(47) 2364 (1) 9207 (7) 2428 (6) 2.9 C(3) 3794 (3) 12498 (5) 6577 (6) 3.552 C (7) 4339 (10) -7153 (6) 2976 (5) 1.5 C (3) 3091 (10) -7159 (7) 2428 (6) 2.9 C(3) 3794 (3) 12498 (5) 6577 (6) 3.552 C (7) 43391 (10) -7159 (7) 2428 (6) 2.9 C(3) 3704 (3) 12498 (5) 6577 (6) 3.55 C (7) 43391 (10) -1131 (7) 361 (6) 2.3 C (3) 7344 (3) 12498 (5) 6577 (6) 3.55 C (7) 43391 (10) -1534 (6) 2976 (5) 1.5 C (3) 3091 (10) -1534 (7) 3470 (6) 2.5 C (3) 3091 (3) 12498 (5) 6377 (6) 3.55 C (7) 43391 (10) -1232 (7) 3470 (6) 2.5 C (3) 3794 (3) 12498 (5) 6577 (6) 3.55 C (7) 43391 (10) -1131 (7) 361 (6) 2.3 C (3) 2376 (1) -2376 (7) 229 (6) 2.0 C (3) 3794 (3) 12498 (5) 6377 (6) 3.55 C (7) 43391 (10) -1534 (6) 2976 (5) 1.5 C (3) 3791 (1) 232 (10) 977 (7) 342 (6) 2.2 C (7) 3370 (1) -2376 (7) 3326 (6) 2.2 C (7) 3370 (1	C(6)	4383 (3)	11050 (4)	5133 (5)	3,33	C(21)	10079 (10)	9210 (6)	8932 (6)	5,3
C(8) 3310 (2) 11678 (4) 6063 (4) 2.68 C(22) 6715 (7) 1533 (5) 9519 (4) 3.4 C(10) 4024 (2) 10225 (3) 6917 (4) 2.26 C(27) 6102 (9) 2123 (6) 10426 (5) 4.9 C(11) 2866 (2) 1087 (4) 772 (5) 2.85 C(28) 7159 (8) 1805 (5) 5949 (5) 4.1 C(12) 2183 (2) 11443 (4) 7661 (5) 3.03 C(29) 4900 (7) 1852 (5) 1249 490 (5) 4.1 C(13) 1952 (2) 11468 (4) 6511 (5) 3.10 C(30) 7410 (7) 1852 (5) 1279 (5) 3.6 C(14) 2542 (2) 11992 (4) 5900 (5) 2.95 O(1) 10058 (4) 3816 (3) 8492 (3) 3.3 C(16) 1471 (3) 12439 (5) 5061 (6) 4.50 O(3) 6514 (5) 6.14 (4) 9378 (3) 4.6 C(17) 1315 (3) 12106 (4) 6223 (5) 3.90 O(4) 8856 (5) 2126 (3) 5378 (3) 4.6 C(17) 1315 (3) 12106 (4) 6223 (5) 3.90 O(4) 8856 (5) 2126 (3) 5378 (3) 4.6 C(17) 1315 (3) 12106 (4) 6223 (5) 3.90 O(4) 8856 (5) 2126 (3) 5378 (3) 4.6 C(21) 117 (3) 1158 (7) 5555 (6) 6.90 O (8) 7125 (6) 733 (4) 5942 (4) 5.2 C(21) 603 (3) 11701 (5) 6338 (6) 5.15 O(7) 7339 (5) 7476 (3) 5765 (3) 4.6 C(21) 117 (3) 1158 (7) 5555 (6) 6.90 O (8) 71629 (4) 44968 (3) 5975 (3) 3.3 C(24) 633 (3) 11701 (5) 5385 (6) 5.15 O(7) 7339 (5) 7476 (3) 5765 (3) 4.6 C(22) 234 (4) 11342 (10) 7264 (7) 12.01 0(9) 11629 (4) 44968 (3) 5975 (3) 3.3 C(24) 2812 (3) 8412 (4) 6849 (5) 3.53 O(4) 1352 (4) 7970 (7) 2209 (6) 2.0 C(23) 2374 (1) 1024 (9) 7018 (8) 2.33 O(4) 3561 (5) 4153 (4) 9971 (1) 3 52 (24) 2812 (3) 8412 (4) 6849 (5) 3.57 C(1) 3561 (5) 9415 (4) 5997 (1) 3561 (5) 9416 (3) 2976 (7) 2929 (6) 2.0 C(3) 5941 (3) 9900 (5) 4934 (6) 422 C(13) 2092 (11) -2247 (7) 2118 (6) 2.9 C(13) 2092 (11) -2247 (7) 2118 (6) 2.9 C(13) 2092 (11) -2247 (7) 2118 (6) 2.9 C(13) 2094 (1) -0131 (7) 361 (6) 2.3 C(7) 4339 (10) 133 (7) 361 (6) 2.9 C(7) 3292 (6) 1.5 C(13) 3791 (7) 423 (6) 2.5 C(14) 3791 (1) -1593 (10) -1137 (7) 361 (6) 2.3 C(7) 4339 (10) -1357 (7) 3470 (6) 2.5 C(13) 2971 (1) -2247 (7) 212 (6) 1.5 C(13) 2971 (1) 213 (10) 71 (6) 2.3 C(7) 329 (10) 313 (10) (10) 9133 (10) 1130 (10) 2976 (5) 1.5 C(13) 2971 (1) 22	C(7)	3648 (3)	11435 (4)	4968 (5)	3,45	C(22)	12053 (9)	9149 (6)	7761 (5)	5,2
C(9) 3312 (2) 10764 (4) 6758 (4) 2.68 C(26) 6715 (7) 1535 (5) 9519 (4) 3.4 C(10) 4024 (2) 10235 (3) 6917 (4) 2.26 C(27) 6102 (9) 2123 (6) 10426 (5) 4.9 C(11) 2856 (2) 10887 (4) 7792 (5) 2.85 C(28) 7159 (8) 1805 (5) 5949 (5) 4.1 C(12) 2183 (2) 11443 (4) 766 (15) 3.03 C(29) 4000 (7) 1852 (5) 5797 (4) 3.6 C(13) 1955 (2) 11468 (4) 6501 (5) 3.10 C(30) 7410 (7) 5542 (5) 5079 (4) 3.6 C(14) 2542 (2) 1992 (4) 5900 (5) 2.95 O(1) 10058 (4) 3816 (3) 8846 (3) 3.3 C(15) 4233 (3) 12547 (5) 5021 (6) 4.25 O(2) 7499 (5) 2167 (3) 8866 (3) 3.3 C(15) 1414 (2) 10450 (4) 6223 (5) 3.90 O(4) 8856 (5) 2126 (3) 5674 (3) 3.9 C(16) 1414 (2) 10450 (4) 6223 (5) 3.90 O(4) 8856 (5) 2126 (3) 5674 (3) 3.9 C(18) 1814 (2) 10450 (4) 6027 (5) 3.49 O(6) 5506 (5) 5441 (3) 7698 (3) 3.8 C(21) 1713 (3) 1181 (1) 5558 (6) 5.07 (7) 71393 (5) 7416 (4) 5976 (3) 3.8 C(21) 1713 (3) 181 (7) 5558 (6) 5.07 (7) 71393 (5) 7416 (4) 5976 (3) 3.8 C(21) 1713 (3) 181 (1) 5558 (6) 5.07 (7) 71393 (5) 7416 (4) 5976 (3) 3.8 C(21) 1713 (3) 181 (1) 5558 (6) 5.33 O(7) 7356 (5) 413 (4) 5912 (4) 5.2 C(24) 2812 (3) 8412 (4) 6849 (5) 5.33 O(7) 4561 (5) 413 (4) 9912 (5) 3.23 O(7) 3561 (5) 413 (4) 9911 (3) 5.2 C(24) 2812 (3) 8412 (4) 6849 (5) 5.33 O(7) 3561 (5) 413 (4) 9911 (3) 5.2 C(24) 2812 (3) 1842 (4) 5.2 C(5) 4219 (3) 792 (6) 5986 (7) 4.59 (7) 1429 (4) 7799 (7) 2208 (6) 2.9 576 (3) 10344 (5) 6615 (6) 3.17 C (3) 2002 (1) -2007 (7) 2248 (6) 2.9 C(29) 5574 (3) 970 (5) 4934 (6) 4.02 C (4) 2302 (1) -2796 (7) 2208 (6) 2.9 C(29) 5574 (3) 970 (5) 4394 (6) 4.02 C (4) 2302 (1) -2796 (7) 2208 (6) 2.9 C(29) 5574 (3) 970 (5) 4394 (6) 4.02 C (4) 2302 (1) -2397 (7) 2208 (6) 2.3 C(3) 3704 (3) 12498 (5) 6577 (6) 3.55 C (5) 3091 (10) -1538 (6) 2976 (5) 1.5 C(3) 3791 (6) 2.35 C (7) 4339 (10) 1.33 (7) 561 (6) 2.3 C(3) 2737 (1) 2.326 (6) 2.4 C(4) 2.33 (10) 771 (6) 2.35 C(3) 2797 (1) 2.226 (6) 2.4 C(4) 2.33 (10) 771 (6) 2.35 C(6) 2.35 140 (2) 771 (7) 4.248 (6) 7.399 (7) 4.299 (6) 7.279 (7) 2.321 (6) 6.37 (7) 716 (6) 6.37 (7) 716 (6) 6.37 (7) 716 (6) 6.37 (7) 716 (6) 6.37 (7) 716 (6) 6.37 (7) 716 (6)	C(8)	3310 (2)	11678 (4)	6063 (4)	2,68	C(23)	12720 (9)	9652 (6)	8556 (6)	4,7
$ \begin{array}{c} C(10) & 4024 (2) & 10235 (3) & 6917 (4) & 2,26 & C(27) & 6102 (9) & 2123 (6) & 10426 (5) & 4.9 \\ C(12) & 2183 (2) & 11443 (4) & 7661 (5) & 3.03 & C(29) & 4900 (7) & 1852 (5) & 7279 (5) & 3.6 \\ C(13) & 955 (2) & 11448 (4) & 7661 (5) & 3.03 & C(29) & 4900 (7) & 1852 (5) & 7279 (5) & 3.6 \\ C(14) & 2542 (2) & 11992 (4) & 5900 (5) & 2.95 & 0(1) & 10058 (4) & 3816 (3) & 8442 (3) & 3.3 \\ C(15) & 2233 (3) & 12247 (5) & 5021 (6) & 4.25 & 0(2) & 7499 (5) & 2167 (3) & 8866 (3) & 3.3 \\ C(16) & 1471 (3) & 12439 (5) & 5061 (6) & 4.50 & 0(3) & 6514 (5) & 0144 (4) & 9378 (3) & 4.6 \\ C(17) & 131 (3) & 11206 (4) & 6231 (5) & 3.09 & 0(6) & 5505 (5) & 5444 (13) & 7942 (4) & 5.2 \\ C(19) & 4476 (2) & 10732 (4) & 776 (5) & 3.09 & 0(6) & 5505 (5) & 5444 (3) & 7968 (3) & 3.8 \\ C(20) & 603 (3) & 11701 (5) & 6358 (6) & 5.15 & 0(7) & 7339 (5) & 7476 (3) & 5765 (3) & 4.6 \\ C(22) & 244 (4) & 11342 (10) & 7264 (7) & 12.01 & 0(9) & 11629 (4) & 4988 (3) & 5975 (3) & 3.3 \\ C(24) & 2812 (3) & 8412 (4) & 6846 (5) & 3.53 \\ C(24) & 2812 (3) & 8412 (4) & 6846 (5) & 3.53 \\ C(25) & 5134 (3) & 1042 (6) & 705 (7) & 5198 (8) & 5.22 \\ C(13) & 516 (6) & 0765 (7) & 5198 (8) & 5.25 \\ C(13) & 516 (6) & 0765 (7) & 5198 (8) & 5.25 \\ C(13) & 509 (3) & 10344 (5) & 4815 (6) & 3.17 & C(2) & 256 (11) & -2907 (7) & 2428 (6) & 2.4 \\ C(28) & 5509 (3) & 10344 (5) & 4815 (6) & 3.17 & C(2) & 250 (11) & -2207 (7) & 2428 (6) & 2.4 \\ C(28) & 5509 (3) & 10344 (5) & 4815 (6) & 3.17 & C(2) & 250 (11) & -2207 (7) & 2428 (6) & 2.4 \\ C(28) & 5509 (3) & 10344 (5) & 4815 (6) & 3.17 & C(2) & 250 (11) & -2907 (7) & 2428 (6) & 2.4 \\ C(28) & 5509 (3) & 10344 (5) & 6677 (6) & 3.65 \\ C(28) & 5509 (3) & 1044 (2) & 7039 (7) & 3.45 (6) & 2.27 \\ C(30) & 5704 (3) & 1044 (3) & 485 (6) & 3.17 & C(2) & 2507 (7) & 3.17 & (7) & 2128 (6) & 2.4 \\ C(30) & 5704 (3) & 10344 (6) & 4076 (1) & 1023 & C(7) & 4339 (10) & 1337 & 370 (6) & 2.5 \\ C(30) & 5704 (3) & 1034 (3) & 6816 (1) & 1.023 & C(7) & 4339 (10) & 1337 & 370 (6) & 2.5 \\ C(31) & 7656 (6) & 7634 (4) & 732 (4) & 535 & (6) & 736 (7) & 3348 ($	C(9)	3312 (2)	10764 (4)	6758 (4)	2,68	C(26)	6715 (7)	1535 (5)	9519 (4)	3,4
$ \begin{array}{c} C(11) & 2866 (2) & 10887 (4) & 7192 (5) & 2.85 & C(28) & 7159 (8) & 1805 (5) & 5949 (5) & 4.1 \\ (C12) & 2183 (2) & 11448 (4) & 6501 (5) & 3.10 & C(30) & 7410 (7) & 5822 (5) & 5079 (4) & 3.6 \\ C(13) & 1955 (2) & 11468 (4) & 6501 (5) & 3.10 & C(30) & 7410 (7) & 5822 (5) & 5079 (4) & 3.6 \\ C(14) & 2542 (2) & 1199 (24) & 5000 (5) & 2.95 & O(1) & 10058 (4) & 3816 (3) & 88866 (3) & 3.3 \\ C(15) & 2233 (3) & 12247 (5) & 5021 (6) & 4.25 & O(2) & 7499 (5) & 2167 (3) & 88866 (3) & 3.3 \\ C(17) & 1315 (3) & 12106 (4) & 6233 (5) & 3.90 & O(4) & 8856 (5) & 2126 (3) & 5674 (3) & 3.92 \\ C(18) & 1844 (2) & 100732 (4) & 7767 (5) & 3.09 & O(6) & 5505 (5) & 5444 (4) & 7688 (3) & 3.8 \\ C(20) & 603 (3) & 11701 (5) & 6338 (6) & 5.15 & O(7) & 7339 (5) & 7476 (3) & 5765 (3) & 4.6 \\ C(21) & 1073 (2) & 10732 (4) & 7767 (5) & 3.09 & O(6) & 5505 (5) & 5444 (3) & 7698 (3) & 3.8 \\ C(22) & 244 (4) & 11342 (10) & 7555 (6) & 6.90 & O(8) & 11492 (9) & 9706 (5) & 9302 (5) & 8.4 \\ C(22) & 244 (4) & 11342 (10) & 7264 (7) & 12.01 & O(9) & 11629 (4) & 4968 (3) & 5755 (3) & 3.3 \\ C(23) & -357 (4) & 11042 (9) & 7028 (8) & 12.33 & O(14') & 3561 (5) & 4153 (4) & 9011 (3) & 5.2 \\ C(26) & 5190 (6) & 7452 (7) & 5188 (8) & 5.52 & C(1) & 15 (10) & -1776 (7) & 2209 (6) & 2.0 \\ C(28) & 5509 (3) & 10344 (5) & 6815 (6) & 3.17 & C(3) 2092 (11) & -3247 (7) & 2209 (6) & 2.0 \\ C(28) & 5509 (3) & 10344 (5) & 6431 (6) & 4.02 & C(24) & 32971 (1) & -2796 (7) & 2259 (6) & 2.5 \\ C(30) & 3704 (3) & 1229 (7) & 3429 (6) & 5.5 & C7 & 4339 (10) & -1793 (7) & 2418 (6) & 2.9 \\ C(29) & 5547 (3) & 9700 (5) & 4934 (6) & 4.02 & C(4) & 3297 (1) & -3797 (7) & 2209 (6) & 2.5 \\ C(30) & 3704 (3) & 1249 (3) & 6517 (6) & 3.85 & C(5) & 3091 (10) & -1376 (7) & 3259 (6) & 1.5 \\ C(30) & 3704 (3) & 1249 (3) & 6517 (6) & 1.85 & C(7) & 3079 (10) & -1337 (7) & 3611 (6) & 2.3 \\ C(30) & 3704 (3) & 1249 (3) & 6517 (6) & 1.85 & C(7) & 3079 (10) & 133 (7) & 3611 (6) & 2.3 \\ C(30) & 3704 (3) & 1249 (3) & 6517 (6) & 1.85 & C(7) & 1102 (7) & 3259 (6) & 3.1 \\ C(30) & 7904 (7) & 17339 (7) & 4.19 & C(1$	C(10)	4024 (2)	10235 (3)	6917 (4)	2,26	C(27)	6102 (9)	2123 (6)	10426 (5)	4,9
$ \begin{array}{c} C(12) & 2181 (2) & 11443 (4) & 7661 (5) & 3.03 & C(29) & 4900 (7) & 1852 (5) & 7279 (5) & 3.6 \\ C(14) & 2542 (2) & 11992 (4) & 5900 (5) & 2.95 & O(11) & 10058 (4) & 3816 (3) & 8442 (3) & 3.3 \\ C(16) & 1471 (3) & 12439 (5) & 5061 (6) & 4.50 & O(3) & 6514 (5) & 614 (4) & 9378 (3) & 4.6 \\ C(17) & 1315 (3) & 12106 (4) & 6231 (5) & 3.09 & O(4) & 8856 (5) & 2126 (3) & 5674 (3) & 3.9 \\ C(18) & 1814 (2) & 100486 (4) & 6027 (5) & 3.47 & O(5) & 7125 (6) & 733 (4) & 5942 (4) & 5.2 \\ C(19) & 4476 (2) & 10732 (4) & 776 (5) & 3.09 & O(6) & 5505 (5) & 5444 (3) & 7698 (3) & 3.8 \\ C(20) & 603 (3) & 11701 (5) & 6358 (6) & 5.15 & O(7) & 7339 (5) & 7476 (3) & 5765 (3) & 4.6 \\ C(21) & 117 (3) & 1153 (1) & 7555 (6) & 6.60 & O(8) & 11492 (9) & 9706 (8) & 9302 (5) & 8.4 \\ C(22) & 2944 (4) & 11342 (4) & 7264 (7) & 12.03 & O(9) & 11629 (4) & 4988 (3) & 5775 (3) & 3.3 \\ C(23) & -214 (4) & 11342 (20) & 6996 (7) & 3.33 & C(1) & 156 (10) & -1776 (7) & 2428 (6) & 2.4 \\ C(24) & 5190 (6) & 7425 (7) & 5188 (8) & 5.52 & C(1) & 156 (10) & -1776 (7) & 2428 (6) & 2.4 \\ C(26) & 5190 (6) & 7425 (7) & 5188 (8) & 552 & C(1) & 156 (10) & -1776 (7) & 2428 (6) & 2.4 \\ C(28) & 5590 (3) & 1034 (5) & 6815 (6) & 3.17 & C(2) & 256 (11) & -2907 (7) & 2428 (6) & 2.4 \\ C(30) & 3704 (3) & 12498 (5) & 6577 (6) & 3.85 & C(4) & 2327 (11) & -2796 (7) & 2249 (6) & 3.0 \\ C(29) & 5547 (3) & 9700 (5) & 4934 (6) & 4.02 & C(3) & 2092 (11) & -2347 (7) & 2118 (6) & 2.9 \\ C(31) & 566 (6) & 9914 (6) & 7432 (9) & 5.55 & C(6) & 4483 (10) & -1033 (7) & 3470 (6) & 2.5 \\ C(31) & 7666 (6) & 9934 (7) & 7399 (7) & 4.19 & C(5) & 3091 (10) & -1593 (6) & 2776 (5) & 1.5 \\ C(32) & 7866 (6) & 9314 (5) & 6037 (18) & 16.85 & C(4) & 2278 (10) & -1292 (7) & 3126 (6) & 2.4 \\ C(33) & 7917 (4) & 10432 (9) & 8106 (11) & 10.23 & C(7) & 4339 (10) & -1337 (7) & 346 (6) & 2.3 \\ C(30) & 3704 (3) & 1294 (9) & 7116 (9) & 6096 (17) & 18.50 & (10) & 7137 (7) & 3426 (6) & 2.4 \\ C(33) & 7907 (3) & 5103 (4) & 3007 (18) & 16.85 & C(16) & 2384 (10) & -1031 (7) & 3326 (6) & 1.2 \\ C(33) & 7906 (6) & 3226 (1$	C(11)	2866 (2)	10887 (4)	7792 (5)	2,85	C(28)	7159 (8)	1805 (5)	5949 (5)	4,1
C(13) (254) (2) (140) (24) (250) (3) $(3,10)$ C(30) (7410) (7) (5542) (5) (507) (4) $(3,6)$ C(14) (254) (2) (129) (24) (500) (5) (525) (01) (10058) (4) (3816) (3) 8866 (3) $(3,3)$ C(15) (223) (3) (12547) (5) 5021 (6) $(4,25)$ (0(2) (7499) (5) (2167) (3) 8866 (3) $(3,3)$ C(16) (147) (3) (1239) (5) 5061 (6) $(4,25)$ (0(2) 7499 (5) (2167) (3) 8866 (3) $(3,3)$ C(18) (1814) (2) (10486) (4) (623) (5) $(3,90)$ (0(4) 8856 (5) (2126) (3) 5674 (3) $(3,9)$ C(18) (1814) (2) (10732) (4) (7767) (5) $(3,90)$ (0(6) (5505) (5) 5441 (4) 9768 (3) $(3,8)$ C(20) (601) (3) (1170) (5) (538) (6) $(5,15)$ (0,7) (7339) (5) (7476) (3) (576) (3) $(4,6)$ C(21) (117) (3) (138) (6) $(5,15)$ (0,7) (7339) (5) (7476) (3) (576) (3) $(4,6)$ C(21) (117) (3) (138) (6) $(5,15)$ (0,7) (7339) (5) (7476) (3) (576) (3) $(3,6)$ C(22) (244) (4) (11342) (10) 72647 (7) $(12,01)$ (0(9) (1629) (4) 4968 (3) (353) (2) (24) (241) (3) (242) (7) (242) (7) (242) (7) (242) (7) (223) (6) $(3,3)$ C(24) (231) (3) (242) (7) (248) (8) $(2,3)$ (1) (10) (13) (2) (10) (137) (3) (10) (3) (22) C(24) (230) (3) (1242) (7) (238) (8) $(12,3)$ (1) (15) (10) (-1776) (7) (2228) (6) $(2,4)$ C(27) (4760) (6) (675) (7) (429) (10) $(10,24)$ C(2) (256) (11) (-2077) (7) (2239) (6) $(2,2)$ C(28) (5309) (3) (10344) (3) (45) (45) (6) (17) (2397) (10) (13) (7) (24) (3) (24) (3) (24) (3) (24) (3) (24) (3) (25) (4) (11) (23) (27) (3) (27) (3) (23) (3) (23) (3) (24) (3) (24) (3) (24) (3) (24) (3) (24) (3) (24) (3) (24) (3) (24) (3) (24) (3) (24) (3) (24) (3) (24) (3) (24) (3) (27)	C(12)	2183 (2)	11443 (4)	7661 (5)	3,03	C(29)	4900 (7)	1852 (5)	7279 (5)	3,6
$ \begin{array}{c} C(14) & 2342 (1) & 1992 (4) & 5000 (5) & 2.93 & O(1) & 10028 (4) & 3816 (5) & 8849 (3) & 3,3 \\ C(16) & 1471 (3) & 12439 (5) & 5061 (6) & 4.25 & O(2) & 7499 (5) & 2167 (3) & 8866 (3) & 3,3 \\ C(17) & 1315 (3) & 12106 (4) & 6233 (5) & 3,90 & O(4) & 8856 (5) & 2126 (3) & 5574 (3) & 3,9 \\ C(18) & 1814 (2) & 10486 (4) & 6027 (5) & 3,47 & O(5) & 7125 (6) & 7333 (4) & 5942 (4) & 5,2 \\ C(19) & 4476 (2) & 10732 (4) & 7767 (5) & 3,09 & O(6) & 5505 (5) & 5441 (3) & 7698 (3) & 3,8 \\ C(20) & 603 (3) & 11701 (5) & 6558 (6) & 5,15 & O(7) & 7339 (5) & 7476 (3) & 5765 (3) & 4,6 \\ C(21) & 117 (3) & 11581 (7) & 5555 (6) & 6,90 & O(8) & 11492 (9) & 9706 (5) & 9302 (5) & 8,4 \\ C(22) & 294 (4) & 11342 (10) & 7264 (7) & 12.01 & O(9) & 11629 (4) & 4968 (3) & 5975 (3) & 3,3 \\ C(26) & 537 (4) & 11042 (9) & 7026 (8) & 12.33 & O(4W) & 3361 (5) & 4153 (4) & 9011 (3) & 5.2 \\ C(25) & 2439 (3) & 7932 (6) & 5936 (7) & 4.66 & (c) & Hydroxy-12 amoorastatine' \\ C(26) & 5190 (6) & 7425 (7) & 5188 (8) & 5.52 & C(1) & 15 (10) & -1776 (7) & 2209 (6) & 3,0 \\ C(28) & 5509 (3) & 10344 (5) & 6815 (6) & 3,17 & C(3) & 2092 (11) & -3294 (7) & 2118 (6) & 2,9 \\ C(30) & 3704 (3) & 12498 (5) & 6577 (6) & 3.85 & C(3) & 3091 (10) & -1534 (7) & 2249 (6) & 2,2 \\ C(30) & 3704 (3) & 12498 (5) & 6577 (6) & 3.85 & C(3) & 3091 (10) & -1334 (7) & 2219 (6) & 1.25 \\ C(33) & 7017 (4) & 1043 (9) & 8106 (11) & 0.23 & C(8) & 2858 (0) & 570 (7) & 3771 (6) & 2.33 \\ C(33) & 7304 (3) & 12498 (5) & 6577 (6) & 3.85 & C(7) & 4339 (10) & 133 (7) & 3470 (6) & 2.5 \\ C(34) & 7566 (6) & 9634 (15) & 6307 (18) & 16.86 & C(9) & 1162 (9) & -1013 (7) & 3611 (6) & 2.3 \\ C(33) & 7391 (7) & 7136 (4) & 3771 (6) & 3.85 & (10) & 1202 (7) & 3737 (6) & 2.5 \\ C(34) & 7566 (6) & 9634 (15) & 6307 (18) & 16.86 & C(9) & 1162 (9) & -1013 (7) & 371 (6) & 2.5 \\ C(33) & 7391 (7) & 7715 (4) & 3.57 & (13) & 774 (11) & 2203 (6) & 7377 (6) & 3.5 \\ C(33) & 7404 (3) & 7298 (7) & 7715 (4) & 3.57 & (13) & 579 (1) & 3254 (6) & 9.2 \\ C(33) & 7390 (7) & 7732 (4) & 3.77 & (23) & 2285 (10) & 1707 (7) & 343 (6) & 2.5$	C(13)	1955 (2)	11468 (4)	6501 (5)	3,10	C(30)	7410 (7)	5542 (5)	5079 (4)	3,6
C1(5) 2235 (3) 1234 (3) 3021 (6) 4.23 0(2) (499 (3) 216 (3) 886 (3) 3.3 C1(7) 1315 (3) 12106 (4) 6233 (5) 3.90 0(4) 8856 (5) 2126 (3) 5674 (3) 3.92 C1(8) 1814 (2) 10486 (4) 6027 (5) 3.47 0(5) 7125 (6) 733 (4) 5942 (4) 5.2 C1(9) 4476 (2) 10732 (4) 7767 (5) 3.09 0(6) 5505 (5) 5441 (3) 7698 (3) 3.8 C(20) 603 (3) 11701 (5) 6535 (6) 6.90 0(8) 11492 (9) 9706 (5) 9302 (5) 8.4 C(21) 117 (3) 11581 (7) 5555 (6) 6.90 0(8) 11492 (9) 9706 (5) 9302 (5) 8.4 C(22) 294 (4) 11342 (10) 7264 (7) 1201 0(9) 11622 (4) 44668 (3) 5975 (3) 3.3 C(23) -357 (4) 11042 (9) 7028 (8) 12.33 0(μ / 3561 (5) 4153 (4) 9011 (3) 5.2 C(26) 5190 (6) 7425 (7) 4526 (7) 4.66 (r) Hydrox-12 amocrastatine ⁻ C(26) 5190 (6) 7425 (7) 5188 (8) 5.52 C (1) 15 (10 - 1776 (7) 2428 (6) 2.4 C(27) 4760 (6) 6765 (7) 4529 (10) 10.24 C (2) 256 (11) $-3207 (7) 2428 (6) 2.4$ C(28) 5590 (3) 10344 (5) 66815 (6) 3.17 C (3) 2092 (11) $-3207 (7) 2428 (6) 2.4$ C(30) 3704 (3) 1248 (5) 6677 (6) 3.85 C (4) 3297 (11) $-3276 (7) 2428 (6) 2.4$ C(31) 7656 (4) 9934 (6) 7399 (7) 4.19 C (3) 2092 (11) $-3247 (7) 2118 (6) 2.9$ C(31) 7365 (4) 9934 (6) 77399 (7) 4.19 C (5) 3091 (10) $-1333 (7) 3470 (6) 2.5$ C(31) 7365 (4) 9934 (6) 77423 (9) 5.55 C (7) 4339 (10) $-1013 (7) 3611 (6) 2.3$ C(33) 7917 (4) 10433 (9) 8106 (11) 10.23 C (7) 4339 (10) $-1013 (7) 3611 (6) 2.3$ C(34) 7566 (6) 9034 (15) 6307 (18) 16.86 C (8) 288 (40) 570 (7) 3771 (6) 2.43 C(34) 7756 (6) 9734 (15) 5368 (6) 7.12 C (15) 3579 (10) 1232 (7) 3254 (6) 1.9 O(1) 3452 (2) 8726 (3) 6397 (8) 1.3.37 C (13) 774 (11) 2030 (6) 2752 (6) 2.3.4 C(34) 7756 (6) 9735 (536 (6) 7.12 C (13) 3774 (11) 2030 (6) 2752 (6) 2.3.4 O(15) 518 (12) 1016 (3) 7725 (6) 3.57 C (10) 1298 (10) 1722 (7) 3433 (6) 2.2. C(35) 5196 (3) 7390 (5) 5368 (6) 7.12 C (13) 3779 (11) 2532 (8) 3343 (9) 4.1 O(1) 0466 (6) 3256 (4) 7735 (4) 3.2 C (10) 229 (10) 1540 (7) 3254 (6) 2.4 O(13) 3016 (2) 1055 (3) 8661 (3) 2.7 C (27) 2453 (8) 1.31 (4) 4232 (7) 7.357 (6) 2.57 C(10) 8746 (6) 3256 (4) 7552 (4) 3.2 C (30) 2494 (11) 5353 (8) 946 (4) 3.1 C(10) 0786	C(14)	2542 (2)	11992 (4)	5900 (5)	2,95	O(1)	10058 (4)	3816 (3)	8492 (3)	3,3
C10) 14 (1) 14	C(15)	2233(3)	12547(5) 12420(5)	5061 (6)	4,25	O(2)	/499 (5)	216/(3)	8866 (3)	3,3
C(1) 1513 (3) 1210 (7) 6233 (3) 347 0 (4) 8650 (5) 7216 (5) 7347 (4) 5944 (3) 7698 (3) 3.8 C(19) 4476 (2) 10732 (4) 7767 (5) 3.09 0 (6) 5503 (5) 7476 (3) 5766 (5) 4.6 C(20) 603 (3) 11701 (5) 6538 (6) 5.15 0 (7) 7339 (5) 7476 (3) 5766 (5) 4.6 C(21) 117 (3) 11581 (7) 5555 (6) 6.90 0 (8) 11492 (9) 9706 (5) 9302 (5) 8.4 C(22) 294 (4) 11342 (10) 7264 (7) 12.01 0 (9) 11629 (4) 4968 (3) 5973 (3) 3.3 C(23) -357 (4) 11042 (9) 7028 (8) 12.33 0 (4) 3561 (5) 4153 (4) 9911 (3) 5.2 C(24) 2812 (3) 8812 (4) 66494 (5) 3.53 C(25) 2439 (3) 7952 (6) 5936 (7) 4.66 (c) Hydroxy-12 amocrastatice ⁻ C(26) 5190 (6) 7425 (7) 5188 (8) 5.52 C(1) 15 (10) -1776 (7) 2428 (6) 2.4 C(27) 4760 (6) 6765 (7) 4529 (10) 10.24 C(2) 256 (11) -2907 (7) 2209 (6) 3.0 C(28) 5509 (3) 10344 (5) 6815 (6) 3.17 C (3) 2092 (11) -2303 (7) 2297 (8) 3.2 C(30) 3704 (3) 12498 (5) 6577 (6) 3.85 (5) 3001 (10) -1533 (6) 2976 (5) 1.5. C(31) 6689 (4) 10462 (7) 7399 (7) 4.19 C (6) 3448 (3 (10) -1013 (7) 361 (6) 2.3 C(33) 7917 (4) 10433 (9) 8106 (11) 10.23 C (7) 4339 (10) -1013 (7) 361 (6) 2.5 C(34) 7566 (6) 9934 (6) 7423 (9) 5.55 (7) 4439 (10) -1013 (7) 3470 (6) 2.5 C(34) 7566 (6) 9934 (4) 7423 (9) 547 (3) 377 (21) 773 (7) 3771 (6) 2.3 C(35) 8123 (10) 9177 (16) 6096 (17) 18.50 C (9) 1162 (9) -107 (7) 3771 (6) 2.3 C(34) 7566 (6) 9934 (4) 7743 (4) 4.41 C(11) -550 (10) 378 (7) 3436 (6) 2.2 C(33) 3796 (3) 7390 (3) 5368 (6) 7.12 C (15) 3579 (11) 3201 (6) 2752 (6) 2.4 O(3) 4442 (2) 7693 (3) 5716 (4) 3.37 C (13) 774 (11) 2030 (6) 2752 (6) 2.3 O(5) 5796 (3) 7390 (3) 5368 (6) 7.12 C (15) 3579 (11) 3221 (7) 2756 (7) 2.7 O(6) 5183 (2) 1005 (3) 5368 (6) 7.12 C (15) 3579 (11) 3221 (7) 2756 (7) 2.7 O(10) 2465 (2) 10753 (3) 4400 (4) 3.53 C (19) 908 (10) -1232 (7) 3436 (6) 2.2 O(10) 346 (2) 10753 (3) 4400 (4) 3.53 C (19) 908 (10) -1232 (7) 3436 (6) 2.2 O(10) 346 (2) 10753 (3) 4400 (4) 3.53 C (19) 908 (10) -1232 (7) 3436 (6) 2.7 O(10) 246 (2) 10753 (3) 4400 (4) 3.53 C (19) 908 (10) -1232 (7) 3436 (6) 2.7 O(10) 3266 (6) 3256 (4) 753 (4)	C(10)	1471(3) 1215(2)	12439 (3)	5001 (0) 6222 (5)	4,30	O(3)	0314(3)	614 (4) 212((2)	9378(3)	4,0
C(1a) 1617 (2) 10732 (4) 7767 (5) 3.09 0(3) 7123 (b) 735 (c) 7542 (c) 3.42 C(2) 0603 (3) 11701 (5) 6358 (6) 5.15 0(7) 7339 (5) 7476 (3) 5765 (3) 4.6 C(21) 117 (3) 11381 (7) 5555 (6) 6.90 0(8) 11492 (9) 9706 (5) 9302 (5) 8.4 C(23) -357 (4) 11042 (9) 7028 (8) 2.33 0(49 3561 (5) 4153 (4) 9011 (3) 5.2 C(24) 2812 (3) 8412 (4) 6849 (5) 3.53 C(24) 2812 (3) 8412 (4) 6849 (5) 3.53 C(25) 2439 (3) 7752 (6) 5936 (7) 4.66 (c) Hydroxy-12 amoorastatine' C(26) 5190 (6) 7425 (7) 5188 (8) 5.52 C(1) 15 (10) -1776 (7) 2428 (6) 2.4 C(27) 4760 (6) 6755 (7) 4529 (10) 10.24 C(2) 256 (11) -2907 (7) 2200 (6) 3.0 C(28) 5509 (3) 10344 (5) 6815 (6) 3.17 C(3) 2092 (11) -3247 (7) 2118 (6) 2.9 C(30) 3704 (3) 12498 (5) 6577 (6) 3.85 C(4) 3297 (11) -2796 (7) 2259 (6) 2.2 C(31) 6689 (4) 10042 (7) 7399 (7) 4.19 C(5) 3091 (10) -1593 (6) 2976 (5) 1.5 C(32) 7365 (4) 9934 (6) 7423 (9) 5.55 C (6) 4483 (10) -1033 (7) 3470 (6) 2.5 C(33) 7917 (4) 10433 (9) 8106 (11) 10.23 C(8) 2585 (40) -1037 (7) 3212 (6) 1.8 C(34) 7566 (6) 9177 (16) 6056 (17) 18.50 C(10) 1298 (10) -1292 (7) 3254 (6) 1.9 C(33) 4442 (2) 7693 (3) 7715 (4) 3.37 C (13) 774 (11) 2030 (6) 275 (2) 2.3 C(34) 756 (3) 9177 (16) 6056 (17) 18.50 C (10) 1298 (10) -1292 (7) 3254 (6) 1.9 C(13) 4679 (3) 1272 (7) 3354 (6) 7.12 (7) 1377 (6) 2.5 C(33) 7917 (4) 10433 (9) 5616 (4) 3.90 C (14) 2338 (10) -1292 (7) 3254 (6) 1.9 C(3) 2487 (2) 8494 (4) 7734 (4) 4.81 C (12) -759 (10) 1540 (7) 3245 (6) 2.4 C(3) 4442 (2) 7693 (3) 7715 (4) 3.25 C(14) 7756 (3) 7390 (5) 5368 (6) 7.12 C (15) 5379 (1) 12351 (3) 434 56 (6) 2.5 C(3) 5796 (3) 7390 (5) 5368 (6) 7.12 C (13) 3781 (1) 3221 (7) 2756 (7) 2.7 C(8) 6605 (2) 11274 (4) 7654 (5) 6.01 C (18) 2843 (11) 3221 (7) 2756 (7) 2.7 C(6) 5469 (6) 1337 (7) 7344 3.26 C (16) 2843 (11) 3221 (7) 2756 (7) 2.7 C(6) 5469 (6) 13256 (4) 7532 (4) 2.7 C (28) 2826 (12) -3204 (1) 1550 (4) 3.8 C(10) 7613 (2) 10550 (3) 7552 (4) 2.7 C (28) 2826 (12) -2005 (5) 4286 (6) 3.1 C(14) 7676 (5) 6732 (4) 6046 (4) 2.6 O (11) -1277 (13) 177 (10) 109	C(17)	1313(3) 1814(2)	10486 (4)	60235(3)	3,90	O(4)	8830 (3)	2120(3)	5074 (3)	3,9
$ \begin{array}{c} C(2) & F(3) & F$	C(10)	4476(2)	10732(4)	7767(5)	3,47	O(3)	5505 (5)	5441 (2)	7609 (2)	2,2
$ \begin{array}{c} C(2) & C$	C(20)	603(3)	10752(4)	6358 (6)	5.15	O(0)	7329 (5)	7441(3)	5765 (3)	3,0 4.6
$ \begin{array}{c} C(22) & 294 (4) & 11342 (10) & 7264 (7) & 170 & 0.09 & 1162 (9) & 40.08 (6) & 2976 (3) & 3.3 \\ C(23) & -357 (4) & 11042 (9) & 7028 (8) & 12.33 & 0(1P) & 3561 (5) & 4153 (4) & 9011 (3) & 5.2 \\ C(24) & 2812 (3) & 8412 (4) & 6849 (5) & 3.53 \\ C(25) & 2439 (3) & 7952 (6) & 5936 (7) & 4.66 & (c) Hydroxy-12 amocrastatine^- \\ \hline \\ C(26) & 5190 (6) & 7745 (7) & 4529 (10) & 10.24 & C(2) & 256 (11) & -1907 (7) & 2428 (6) & 2.4 \\ C(27) & 4760 (6) & 6765 (7) & 4529 (10) & 10.24 & C(2) & 256 (11) & -3247 (7) & 2118 (6) & 2.9 \\ C(28) & 5599 (3) & 10344 (5) & 6815 (6) & 3.17 & C(3) & 2092 (11) & -3247 (7) & 2118 (6) & 2.9 \\ C(29) & 5547 (3) & 9700 (5) & 4934 (6) & 4.02 & C(4) & 3297 (11) & -2796 (7) & 2428 (6) & 2.2 \\ C(31) & 6689 (4) & 10442 (7) & 7399 (7) & 4.19 & C(5) & 3091 (10) & -1593 (6) & 2976 (5) & 1.5 \\ C(33) & 7917 (4) & 10433 (9) & 8106 (11) & 10.23 & C(7) & 4339 (10) & 113 (7) & 3401 (6) & 2.3 \\ C(34) & 7566 (6) & 9634 (15) & 6307 (18) & 16.86 & C(9) & 1162 (9) & -107 (7) & 3212 (6) & 1.8 \\ C(35) & 8123 (10) & 9177 (16) & 6096 (17) & 8.50 & C(10) & 1288 (10) & -1232 (7) & 3245 (6) & 2.4 \\ O(3) & 4442 (2) & 7693 (3) & 7715 (4) & 3.37 & C(13) & 774 (11) & 2030 (6) & 2752 (6) & 2.3 \\ O(4) & 4761 (2) & 8109 (3) & 5616 (4) & 3.90 & C(14) & 2338 (10) & 1722 (7) & 3425 (6) & 2.5 \\ O(5) & 5796 (3) & 7390 (5) & 5368 (6) & 7.12 & C(15) & 3579 (11) & 3242 (6) & 2.5 \\ O(5) & 5796 (3) & 7390 (5) & 5368 (6) & 7.12 & C(15) & 3579 (11) & 3426 (6) & 2.5 \\ O(5) & 5796 (3) & 7390 (5) & 5368 (6) & 7.12 & C(15) & 3579 (11) & 3426 (6) & 2.5 \\ O(6) & 5439 (6) & 01274 (4) & 7553 (4) & 3.62 & C(16) & 2843 (11) & 3422 (7) & 2756 (7) & 2.7 \\ O(10) & 2465 (2) & 13010 (3) & 6002 (4) & 4.46 & C(20) & -216 (12) & 3818 (7) & 0100 (7) & 3.2 \\ O(6) & 5183 (2) & 10351 (3) & 7827 (4) & 3.2 \\ O(7) & 5796 (7) & 2022 (5) & 7722 (4) & 3.46 & C(20) & -216 (12) & 3838 (7) & 2000 (7) & 3.2 \\ O(11) & 1068 (6) & 3256 (4) & 7532 (4) & 2.7 & C(28) & 2826 (12) & -1324 (6) & 7.7 \\ O(10) & 2465 (2) & 11034 (4) & 753 (4) & 3.2 \\ C(11) & 10086 (6) & 3256 (4$	C(21)	117(3)	11581(7)	5555 (6)	6 90	O(8)	11402 (0)	9706 (5)	9302 (5)	4,0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	294(4)	11342(10)	7264 (7)	12.01	O(0)	11629 (4)	4968 (3)	5975 (3)	2,4
$ \begin{array}{c} \hline C(24) \\ (25) \\ (24) \\ (25) \\ (24) \\ (24) \\ (26) \\ (26) \\ (27) \\ (26) \\ (27) \\ (27) \\ (26) \\ (27) \\ (27) \\ (27) \\ (28) \\ (29) \\ (21) \\ (20) \\ (21) $	C(23)	-357(4)	11042 (9)	7028 (8)	12.33	O(W)	3561 (5)	4153 (4)	9011 (3)	5.2
	C(24)	2812 (3)	8412 (4)	6849 (5)	3.53	0(///)	5501 (5)		<i>y</i> on (<i>y</i>)	2,2
$ \begin{array}{c} C(26) & 5190 (6) & 7425 (7) & 5188 (8) & 5.52 & C(1) & 15 (10) & -1776 (7) & 2428 (6) & 2.4 \\ C(27) & 4760 (6) & 6765 (7) & 4529 (10) & 10.24 & C(2) & 256 (11) & -2907 (7) & 2209 (6) & 3.0 \\ C(28) & 5509 (3) & 10344 (5) & 6815 (6) & 3.17 & C(3) & 2092 (11) & -2766 (7) & 2959 (6) & 2.2 \\ C(30) & 3704 (3) & 21498 (5) & 6577 (6) & 3.85 & C(5) & 3091 (10) & -1593 (6) & 2976 (5) & 1.5 \\ C(31) & 6689 (4) & 10462 (7) & 7399 (7) & 4.19 & C(6) & 4483 (10) & -1013 (7) & 3611 (6) & 2.3 \\ C(32) & 7365 (4) & 9934 (6) & 7423 (9) & 5.55 & C(7) & 4339 (10) & 133 (7) & 3470 (6) & 2.3 \\ C(33) & 7917 (4) & 10433 (9) & 8106 (11) & 10.23 & C(8) & 2288 (40) & 570 (7) & 3212 (6) & 1.8 \\ C(35) & 8122 (10) & 9177 (16) & 6096 (17) & 18.50 & C(10) & 1288 (10) & -107 (7) & 3212 (6) & 1.8 \\ O(1) & 3452 (2) & 8726 (3) & 6528 (3) & 2.74 & C(11) & -550 (10) & 378 (7) & 3346 (6) & 2.2 \\ O(2) & 2287 (2) & 8494 (4) & 7743 (4) & 4.81 & C(12) & -759 (10) & 1540 (7) & 3245 (6) & 2.4 \\ O(3) & 4442 (2) & 7693 (3) & 7715 (4) & 3.37 & C(13) & 774 (11) & 2030 (6) & 2752 (6) & 2.3 \\ O(4) & 4761 (2) & 8109 (3) & 5616 (4) & 3.90 & C(14) & 2338 (10) & 1722 (7) & 3335 (6) & 2.4 \\ O(3) & 4442 (2) & 7693 (3) & 72715 (4) & 3.26 & C(16) & 2843 (11) & 3422 (8) & 2863 (8) & 3.8 \\ O(7) & 6175 (2) & 9912 (3) & 7001 (4) & 3.68 & C(17) & 920 (10) & -1803 (7) & 4297 (6) & 2.7 \\ O(8) & 6605 (2) & 11274 (4) & 7654 (5) & 6.01 & C(18) & 922 (11) & 1654 (7) & 1584 (7) & 3.1 \\ O(6) & 5183 (2) & 10051 (3) & 7027 (4) & 3.26 & C(16) & 2843 (11) & 3422 (8) & 2863 (8) & 3.8 \\ O(7) & 6175 (2) & 9912 (3) & 7001 (4) & 3.68 & C(17) & 9208 (6) & -216 (12) & 3388 (7) & 2000 (7) & 3.2 \\ O(10) & 2465 (2) & 13010 (3) & 6002 (4) & 4.46 & C(20) & -216 (12) & 388 (7) & 2010 (7) & 3.2 \\ O(13) & 3016 (2) & 10550 (3) & 8661 (3) & 3.79 & C(23) & -2456 (13) & 4693 (9) & 1342 (10) & 4.4 \\ O(11) & -679 (6) & 2165 (2) & 3206 (4) & 732 (4) & 3.2 & C(30) & 2494 (11) & 535 (8) & 4965 (6) & 3.1 \\ C(10) & 7986 (7) & 1735 (4) & 7352 (4) & 2.7 & C(28) & 2266 (13) & -4399 (6) & 577 (5) & 4.1 \\ C(7) $	C(25)	2439 (3)	7952 (6)	5936 (7)	4,66	(c) Hvdi	roxy-12 amooras	tatine		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(26)	5190 (6)	7425 (7)	5188 (8)	5,52	Cu	15(10)	-1776(7)	2428 (6)	24
$\begin{array}{c} C(28) & 5509 & (3) & (10344 (5) & 6815 (6) & 3,17 & C(3) & 2092 (11) & -2246 (7) & 2118 (6) & 2.9 \\ C(29) & 5547 (3) & 12498 (5) & 6577 (6) & 3.85 & C(4) & 3297 (11) & -2796 (7) & 2195 (6) & 2.7 \\ C(30) & 3704 & (3) & 12498 (5) & 6577 (6) & 3.85 & C(4) & 3297 (11) & -2796 (7) & 2959 (6) & 2.7 \\ C(31) & 6689 & (4) & 10462 (7) & 7399 (7) & 4,19 & C(6) & 4483 (10) & -1013 (7) & 3611 (6) & 2.3 \\ C(32) & 7355 (4) & 9934 (6) & 7422 (9) & 5,55 & C(7) & 4339 (10) & 113 (7) & 3470 (6) & 2.5 \\ C(33) & 7917 & (4) & 10433 (9) & 8106 (11) & 10.23 & C(8) & 2585 (40) & 570 (7) & 3771 (6) & 2.3 \\ C(33) & 7917 & (4) & 10433 (9) & 8106 (17) & 18,50 & C(9) & 1162 (9) & -107 (7) & 3212 (6) & 1.8 \\ C(33) & 8123 & (10) & 9177 & (16) & 6096 (17) & 18,50 & C(19) & 11298 (10) & -1292 (7) & 3254 (6) & 2.9 \\ O(1) & 3452 (2) & 8726 (3) & 6528 (3) & 2.74 & C(11) & -559 (10) & 378 (7) & 3436 (6) & 2.2 \\ O(2) & 2587 (2) & 8494 (4) & 7743 (4) & 4.81 & C(12) & -759 (10) & 1540 (7) & 3245 (6) & 2.4 \\ O(3) & 4442 (2) & 7693 (3) & 7715 (4) & 3.37 & C(13) & 774 (11) & 2030 (6) & 2752 (6) & 2.3 \\ O(4) & 4761 (2) & 8109 (3) & 5616 (4) & 3.90 & C(14) & 2338 (10) & 1722 (7) & 3435 (6) & 2.5 \\ O(5) & 5796 (3) & 7390 (5) & 5368 (6) & 7.12 & C(16) & 2843 (11) & 3422 (8) & 2683 (8) & 3.8 \\ O(7) & 6175 (2) & 9912 (3) & 7001 (4) & 3.68 & C(17) & 861 (11) & 3221 (7) & 2756 (7) & 2.7 \\ O(6) & 5183 (2) & 11237 (6) & 6019 (6) & 10.88 & C(21) & 153 (14) & 4237 (10) & 1109 (9) & 4.8 \\ O(7) & 6175 (2) & 9912 (3) & 7001 (4) & 3.56 & C(16) & 2843 (1) & 3422 (8) & 2683 (8) & 3.8 \\ O(7) & 6175 (2) & 9912 (3) & 7001 (4) & 3.68 & C(17) & 861 (11) & 3221 (7) & 7256 (7) & 2.7 \\ O(10) & 2465 (2) & 11030 (3) & 6002 (4) & 4.46 & C(20) & -216 (12) & 3838 (7) & 2010 (7) & 3.2 \\ O(13) & 3016 (2) & 10550 (3) & 8661 (3) & 3.79 & C(23) & 2494 (1) & 4237 (10) & 1109 (9) & 4.8 \\ O(11) & 10351 (6) & 3215 (4) & 732 (4) & 2.7 & C(28) & 2826 (12) & -3204 (7) & 4055 (7) & 3.5 \\ C(10) & 8748 (5) & 3225 (4) & 7324 (4) & 2.2 & O(7) & 2675 (8) & -2812 (5) & 1142 (4) & 3.2 \\ C(6) & 549$	C(27)	4760 (6)	6765 (7)	4529 (10)	10,24	C(2)	256 (11)	-2907(7)	• 2209 (6)	3.0
$\begin{array}{c} C(29) & 5547 & (3) & 9700 & (5) & 4934 & (6) & 4.02 & C(4) & 3297 & (11) & -2796 & (7) & 2959 & (6) & 22. \\ C(30) & 3704 & (3) & 12498 & (5) & 6577 & (6) & 3.85 & C(5) & 3091 & (10) & -1593 & (6) & 2976 & (5) & 1.5 \\ C(31) & 6689 & (4) & 10462 & (7) & 7399 & (7) & 4.19 & C(6) & 4483 & (10) & -1013 & (7) & 3611 & (6) & 2.5 \\ C(32) & 7365 & (4) & 9934 & (6) & 7423 & (9) & 5.55 & C(7) & 4339 & (10) & -133 & (7) & 3470 & (6) & 2.5 \\ C(33) & 7917 & (4) & 10433 & (9) & 8106 & (11) & 10.23 & C(8) & 2585 & (40) & 570 & (7) & 3771 & (6) & 2.3 \\ C(33) & 8123 & (10) & 9177 & (16) & 6096 & (17) & 18.50 & C(10) & 1298 & (10) & -1292 & (7) & 3224 & (6) & 1.8 \\ C(35) & 8123 & (10) & 9177 & (16) & 6096 & (17) & 18.50 & C(10) & 1298 & (10) & -1292 & (7) & 3224 & (6) & 1.9 \\ O(1) & 3452 & (2) & 8726 & (3) & 6528 & (3) & 2.74 & C(11) & -559 & (10) & 1540 & (7) & 3245 & (6) & 2.2 \\ O(2) & 2587 & (2) & 8494 & (4) & 7743 & (4) & 4.81 & C(12) & -759 & (10) & 1540 & (7) & 3245 & (6) & 2.4 \\ O(3) & 4442 & (2) & 7693 & (3) & 7715 & (4) & 3.37 & C(13) & 774 & (11) & 2030 & (6) & 2752 & (6) & 2.3 \\ O(4) & 4761 & (2) & 8109 & (3) & 5616 & (4) & 3.90 & C(14) & 2338 & (10) & 1722 & (7) & 3425 & (6) & 2.5 \\ O(5) & 5796 & (3) & 7390 & (5) & 5386 & (6) & 7.12 & C(16) & 2843 & (11) & 3422 & (8) & 268 & (8) & 3.8 \\ O(7) & 6175 & (2) & 9912 & (3) & 7001 & (4) & 3.68 & C(17) & 861 & (11) & 3221 & (7) & 2756 & (7) & 2.7 \\ O(8) & 6605 & (2) & 11274 & (4) & 7654 & (5) & 6.01 & C(18) & 922 & (11) & 1654 & (7) & 1584 & (7) & 3.1 \\ O(10) & 2465 & (2) & 11073 & (3) & 4000 & (4) & 3.53 & C(19) & 908 & (10) & -1803 & (7) & 4297 & (6) & 2.7 \\ O(10) & 2465 & (2) & 11031 & (3) & 6002 & (4) & 4.46 & C(20) & -2160 & (12) & 3388 & (7) & 20100 & (7) & 3.2 \\ O(11) & -479 & (3) & 11237 & (6) & 6019 & (6) & 10.88 & C(21) & 153 & (14) & 4237 & (10) & 1109 & (9) & 4.8 \\ O(12) & 1695 & (2) & 11134 & (4) & 8430 & (4) & 4.70 & C(22) & -14256 & (13) & 4693 & (9) & 1342 & (10) & 4.4 \\ O(12) & 1695 & (2) & 11131 & (4) & 8430 & (4) & 4.70 & C(22) & -14256 & (13) & 4297$	C(28)	5509 (3)	10344 (5)	6815 (6)	3,17	$\vec{C}(\vec{3})$	2092 (11)	-3247(7)	2118(6)	2.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(29)	5547 (3)	9700 (5)	4934 (6)	4,02	C(4)	3297 (11)	-2796 (7)	2959 (6)	2.2
	C(30)	3704 (3)	12498 (5)	6577 (6)	3,85	C(5)	3091 (10)	-1593(6)	2976 (5)	1,5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C(31)	6689 (4)	10462 (7)	7399 (7)	4,19	C(6)	4483 (10)	-1013(7)	3611 (6)	2,3
	C(32)	7365 (4)	9934 (6)	/423 (9)	5,55	C(7)	4339 (10)	133 (7)	3470 (6)	2,5
$ \begin{array}{c} C(33) & f(30) & (0) & (0) & (0) & (13) & (16) & (1$	C(33)	7917(4)	10433(9)	8106 (11)	10,23	C(8)	2585 (10)	570 (7)	3771 (6)	2,3
$ \begin{array}{c} C(33) & 6123 (10) & 9177 (10) & 6096 (17) & 16.30 & C(10) & 1298 (10) & -1292 (7) & 3254 (6) & 1.9 \\ O(1) & 3452 (2) & 8726 (3) & 6528 (3) & 2.74 & C(11) & -550 (10) & 378 (7) & 3436 (6) & 2.9 \\ O(3) & 4442 (2) & 7693 (3) & 7715 (4) & 3.37 & C(13) & 774 (11) & 2030 (6) & 2752 (6) & 2.3 \\ O(4) & 4761 (2) & 8109 (3) & 5616 (4) & 3.90 & C(14) & 2338 (10) & 1722 (7) & 3435 (6) & 2.5 \\ O(5) & 5796 (3) & 7390 (5) & 5368 (6) & 7.12 & C(15) & 3579 (11) & 2532 (8) & 3345 (9) & 4.1 \\ O(6) & 5183 (2) & 10361 (3) & 7827 (4) & 3.26 & C(16) & 2843 (11) & 3422 (8) & 2683 (8) & 3.8 \\ O(7) & 6175 (2) & 9912 (3) & 7001 (4) & 3.68 & C(17) & 861 (11) & 3221 (7) & 2756 (7) & 2.7 \\ O(8) & 6605 (2) & 11274 (4) & 7654 (5) & 6.01 & C(18) & 922 (11) & 1654 (7) & 1584 (7) & 3.1 \\ O(9) & 3246 (2) & 10753 (3) & 4400 (4) & 3.53 & C(19) & 908 (10) & -1803 (7) & 4297 (6) & 2.7 \\ O(10) & 2465 (2) & 13010 (3) & 6002 (4) & 4.46 & C(20) & -216 (12) & 3388 (7) & 2010 (7) & 3.2 \\ O(11) & -479 (3) & 11237 (6) & 6019 (6) & 10.88 & C(21) & 153 (14) & 4237 (10) & 1109 (9) & 4.8 \\ O(12) & 1695 (2) & 11113 (4) & 8430 (4) & 4.70 & C(22) & -1922 (14) & 4147 (9) & 2134 (9) & 4.5 \\ O(13) & 3016 (2) & 10550 (3) & 8661 (3) & 3.79 & C(23) & -2456 (13) & 4693 (9) & 1342 (10) & 4.4 \\ C(1) & 10086 (6) & 3256 (4) & 7532 (4) & 2.7 & C(28) & 2826 (12) & -3294 (7) & 4055 (7) & 3.5 \\ C(2) & 9866 (7) & 2092 (5) & 77722 (4) & 3.4 & C(29) & 5138 (11) & -3141 (7) & 2758 (6) & 3.1 \\ C(3) & 7998 (7) & 1753 (4) & 7850 (4) & 3.2 & C(30) & 2494 (11) & 535 (8) & 4965 (6) & 3.1 \\ C(4) & 6744 (6) & 2205 (4) & 7046 (4) & 2.6 & O(1) & -12 (7) & -1172 (5) & 1486 (4) & 3.0 \\ C(5) & 5499 (6) & 4005 (4) & 6480 (4) & 2.9 & O(3) & 3608 (9) & -4349 (6) & 577 (5) & 4.1 \\ C(7) & 5669 (6) & 5182 (4) & 6784 (3) & 2.1 & O(6) & 4694 (7) & 453 (5) & 2472 (4) & 3.2 \\ C(10) & 8748 (5) & 3723 (4) & 6728 (4) & 2.2 & O(7) & 2675 (8) & 2436 (5) & 4289 (5) & 3.6 \\ C(12) & 10850 (6) & 6556 (4) & 6806 (4) & 2.8 & O(9) & -1152 (13) & 4751 (7) & 675 (6) & 6.8 \\ C(12) & 10850 (6) & 6556 (4) & 6806 (4$	C(34)	/300 (0)	9034 (15)	6307(18)	10,80	C(9)	1162 (9)	-107 (7)	3212 (6)	1,8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	O(1)	3452 (10)	9177 (10) 8726 (3)	6528 (2)	18,30	C(10)	1298 (10)	-1292 (7)	3254 (6)	1,9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(1)	2587(2)	8494 (4)	7743(4)	4.81	C(11)	-550 (10)	378 (7)	3436 (6)	2,2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(2)	4442(2)	7693 (3)	7715 (4)	3.37	C(12)	-759 (10)	1540 (7)	3245 (6)	2,4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(4)	4761(2)	8109 (3)	5616 (4)	3.90	C(13)	774 (11)	2030 (6)	2752 (6)	2,3
$\begin{array}{c} 0.66 & 5183 (2) & 10361 (3) & 7827 (4) & 3.26 & C(15) & 3379 (11) & 2332 (8) & 3345 (9) & 4.18 \\ 0(7) & 6175 (2) & 9912 (3) & 7001 (4) & 3.68 & C(17) & 861 (11) & 3422 (8) & 2683 (8) & 3.88 \\ 0(7) & 6175 (2) & 11274 (4) & 7654 (5) & 6.01 & C(18) & 922 (11) & 1654 (7) & 1584 (7) & 3.18 \\ 0(9) & 3246 (2) & 10753 (3) & 4400 (4) & 3.53 & C(19) & 908 (10) & -1803 (7) & 4297 (6) & 2.7 \\ 0(10) & 2465 (2) & 13010 (3) & 6002 (4) & 4.46 & C(20) & -216 (12) & 3838 (7) & 2010 (7) & 3.2 \\ 0(11) & -479 (3) & 11237 (6) & 6019 (6) & 10.88 & C(21) & 153 (14) & 4237 (10) & 1109 (9) & 4.8 \\ 0(12) & 1695 (2) & 11113 (4) & 8430 (4) & 4.70 & C(22) & -1922 (14) & 4147 (9) & 2134 (9) & 4.5 \\ 0(13) & 3016 (2) & 10550 (3) & 8661 (3) & 3.79 & C(23) & -2456 (13) & 4693 (9) & 1342 (10) & 4.4 \\ (b) Amoorastatine & C(26) & 3469 (11) & -3451 (9) & 477 (7) & 3.4 \\ C(1) & 10086 (6) & 3256 (4) & 7532 (4) & 2.7 & C(28) & 2826 (12) & -3204 (7) & 4055 (7) & 3.5 \\ C(2) & 9866 (7) & 2092 (5) & 7722 (4) & 3.4 & C(29) & 5138 (11) & -3141 (7) & 2758 (6) & 3.1 \\ C(3) & 7998 (7) & 1753 (4) & 7850 (4) & 3.2 & C(30) & 2494 (11) & 535 (8) & 4965 (6) & 3.1 \\ C(4) & 6744 (6) & 2205 (4) & 7046 (4) & 2.6 & O(1) & -12 (7) & -1172 (5) & 1486 (4) & 3.0 \\ C(5) & 6931 (6) & 3412 (4) & 7066 (3) & 2.2 & O(2) & 2657 (8) & -2812 (5) & 1142 (4) & 3.2 \\ C(6) & 7404 (6) & 5593 (4) & 6269 (4) & 2.5 & O(5) & 2806 (9) & -4287 (6) & 4047 (5) & 5.2 \\ C(9) & 881 (6) & 4926 (4) & 6784 (3) & 2.1 & O(6) & 4694 (7) & 453 (5) & 4286 (4) & 3.2 \\ C(8) & 7404 (6) & 5593 (4) & 6269 (4) & 2.5 & O(5) & 2806 (9) & -4287 (6) & 4047 (5) & 5.2 \\ C(9) & 881 (6) & 4926 (4) & 6784 (3) & 2.1 & O(6) & 4694 (7) & 453 (5) & 4286 (4) & 3.2 \\ C(10) & 8748 (5) & 3723 (4) & 6728 (4) & 2.2 & O(7) & 2675 (8) & 2436 (5) & 4289 (5) & 3.6 \\ C(12) & 10850 (6) & 6556 (4) & 6806 (4) & 2.8 & O(9) & -1113 (7) & -90 (5) & 3806 (5) & 4.2 \\ C(13) & 9260 (6) & 7032 (4) & 7278 (4) & 2.6 & O(10) & -2308 (8) & 1768 (6) & 2764 (6) & 5.9 \\ C(14) & 7676 (6) & 6738 (4) & 6612 (4) & 3.1 & O(W) & 3548 (9) & 4209 (7) & 82$	O(5)	5796 (3)	7390 (5)	5368 (6)	7.12	C(14)	2338 (10)	1/22(7)	3435 (6)	2,5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(6)	5183 (2)	10361 (3)	7827 (4)	3.26	C(15)	33/9(11)	2032 (8)	3345 (9)	4,1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(7)	6175 (2)	9912 (3)	7001 (4)	3,68	C(10)	2643 (11)	3422 (8)	2083 (8)	3,8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(8)	6605 (2)	11274 (4)	7654 (5)	6,01	C(17)	972(11)	3221(7) 1654(7)	2730(7) 1584(7)	2,7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O(9)	3246 (2)	10753 (3)	4400 (4)	3,53	C(10)	908 (10)	-1803(7)	4297 (6)	27
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O(10)	2465 (2)	13010 (3)	6002 (4)	4,46	C(20)	-216(12)	3838 (7)	2010 (7)	3.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O(11)	-479 (3)	11237 (6)	6019 (6)	10,88	C(21)	153 (14)	4237 (10)	1109 (9)	4,8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	O(12)	1695 (2)	11113 (4)	8430 (4)	4,70	C(22)	-1922 (14)	4147 (9)	2134 (9)	4,5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	O(13)	3016 (2)	10550 (3)	8661 (3)	3,79	C(23)	-2456 (13)	4693 (9)	1342 (10)	4,4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(1)					C(26)	3469 (11)	-3451 (9)	477 (7)	3,4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(b) Amo	orastatine				C(27)	4159 (15)	-2793 (9)	-401 (7)	5.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(1)	10086 (6)	3256 (4)	7532 (4)	2,7	C(28)	2826 (12)	-3204 (7)	4055 (7)	3,5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2)	9866 (7)	2092 (5)	7722 (4)	3,4	C(29)	5138 (11)	-3141 (7)	2758 (6)	3,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3)	7998 (7)	1753 (4)	7850 (4)	3,2	C(30)	2494 (11)	535 (8)	4965 (6)	3,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4)	6744 (6)	2205 (4)	7046 (4)	2,6	O(1)	-12(7)	-1172 (5)	1486 (4)	3,0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(5)	6931 (6)	3412 (4)	7066 (3)	2,2	0(2)	2657 (8)	-2812(5)	1142 (4)	3,2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6)	5499 (6)	4005 (4)	6480 (4)	2,9	O(3)	3608 (9)	-4349 (6)	577(5)	4,1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(7)	5669 (6)	5182 (4)	6055 (4)	3,1	0(4)	1138 (8)	-2905 (5)	4286 (4)	5.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		/404 (b) 8881 (c)	3393 (4) 4076 (4)	0209 (4) 6784 (2)	2,5	0(3)	2000 (9) 4604 (7)	-428/(0)	4047(3) 2472(4)	3,2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)	8748 (5)	4920 (4) 3723 (1)	6728 (4)	2,1	O(7)	2675 (8)	433 (3) 2426 (5)	2972 (4) 2780 (5)	3.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(10)	10571 (6)	5125 (4)	6476 (4)	2,2	0(8)	-1152(13)	4751 (J)	675 (6)	5,0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	10850 (6)	6556 (4)	6806 (4)	2.8	O(9)	-1713(7)	-90 (5)	3806 (5)	4.2
C(14) 7676 (6) 6738 (4) 6612 (4) 3,1 $O(W)$ 3548 (9) 4209 (7) 8920 (6) 6,4	C(13)	9260 (6)	7032 (4)	7278 (4)	2,6	O(10)	-2308(8)	1768 (6)	2764 (6)	5.9
	C(14)	7676 (6)	6738 (4)	6612 (4)	3,1	O(W)	3548 (9)	4209 (7)	8920 (6)	6,4

.

structures du squelette classique de limonoïde, famille de composés tétranortriterpéniques: quatre cycles A, B, C, D avec un cycle furanne en 17, en époxyde en 14, 15, un hydroxyle en 7 et un pont hémiacétalique entre C(10) et C(19).

Tabl	leau	3.	Distances	s inte	rato	miques	(Å) av	ec éc	carts-
type	enti	re	parenthè	ses	(la	numéro	otation	est	celle
de	l'aph	han	astatine)	de	(a)) l'aph	nanasta	tine,	(b)
1	l'amo	ord	astatine. (c) l'h	vdro	xv-12a	mooras	statin	IP

	(<i>a</i>)	<i>(b)</i>	(<i>c</i>)
C(1) - C(2)	1.510 (8)	1.523 (8)	1.49 (1)
C(1) - C(10)	1,552 (8)	1,573 (7)	1.57 (1)
C(1) = O(1)	1,052 (0)	1,379 (6)	1 45 (1)
C(2) - C(3)	1,540 (9)	1,530 (8)	1,43(1)
C(2) = C(3)	1,340(3) 1,431(7)	1,550 (8)	1,52 (1)
C(2) = O(3)	1,431 (7)	1 5 3 5 (7)	1.52 (1)
C(3) = C(4)	1,329(9)	1,525(7)	1,53(1)
C(3) = O(4)	1,450 (8)	1,485 (0)	1,47(1)
C(4) = C(5)	1,546 (8)	1,554 (7)	1,55 (1)
C(4) - C(28)	1,542 (9)	1,558 (8)	1,57(1)
C(4) - C(29)	1,532 (9)	1,542 (7)	1,55 (1)
C(5) - C(6)	1,521 (8)	1,535 (7)	1,54 (1)
C(5) - C(10)	1,554 (8)	1,544 (6)	1,52 (1)
C(6) - C(7)	1,529 (8)	1,528 (8)	1,49 (1)
C(7) - C(8)	1,542 (9)	1,537 (7)	1,55 (1)
C(7)–O(9)	1,426 (8)	1,430 (7)	1,40 (1)
C(8) - C(9)	1,558 (8)	1,568 (7)	1,57 (1)
C(8) - C(14)	1,555 (8)	1,547 (7)	1,55 (1)
C(8) - C(30)	1,533 (9)	1,549 (7)	1,55 (1)
C(9) - C(10)	1,575 (8)	1,548 (7)	1,53 (1)
C(9) - C(11)	1,549 (8)	1,520 (6)	1,52 (1)
C(10) - C(19)	1,536 (8)	1,530 (7)	1,54 (1)
C(11) - C(12)	1,542 (8)	1.537 (8)	1.52 (1)
C(11) = O(13)	1,209 (8)	1,207 (6)	1.21 (1)
C(12) - C(13)	1,500 (9)	1,523 (7)	1.52 (1)
C(12) = O(12)	1,500 (9)	1,525 (7)	1,32(1)
C(12) = C(12)	1,411(0) 1 544 (8)	1 535 (7)	1,50(1)
C(13) = C(14) C(13) = C(17)	1,545 (0)	1,555 (7)	1,34(1)
C(13) - C(17)	1,505 (9)	1,502 (8)	1,55(1)
C(13) = C(16)	1,550 (9)	1,333(7)	1,00(1)
C(14) = C(13)	1,408 (10)	1,407 (8)	1,43 (1)
C(14) = O(10)	1,404 (8)	1,470(7)	1,45 (1)
C(15) = C(16)	1,474 (9)	1,502 (9)	1,53 (1)
C(15) = O(10)	1,450 (9)	1,463 (8)	1,44 (1)
C(16) - C(17)	1,554 (10)	1,544 (8)	1,59 (1)
C(17) - C(20)	1,492 (10)	1,501 (8)	1,49 (1)
C(19) - O(6)	1,456 (7)	1,429 (7)	1,43 (1)
C(20) - C(21)	1,375 (11)	1,378 (10)	1,32 (1)
C(20)-C(22)	1,367 (13)	1,402 (9)	1,41 (1)
C(21) = O(11)	1,373 (10)	1,347 (10)	1,33 (2)
C(22)–C(23)	1,356 (13)	1,313 (10)	1,30 (2)
C(23) - O(11)	1,313 (13)	1,381 (10)	1,37 (1)
C(24)–C(25)	1,488 (10)		
C(24)–O(1)	1,369 (7)		
C(24)–O(2)	1,192 (9)		
C(26)–C(27)	1,488 (13)	1,488 (9)	1,53 (1)
C(26)-O(4)	1,380 (9)	1,333 (7)	1,37 (1)
C(26) - O(5)	1,198 (10)	1,205 (8)	1,17 (1)
C(28)-O(6)	1,408 (7)	1,437 (7)	1,42 (1)
C(28) - O(7)	1,442 (7)	1,375 (7)	1,39 (1)
C(31) - C(32)	1,514 (9)		-, (-)
C(31) = O(7)	1.364 (8)		
C(31) = O(8)	1,194 (9)		
C(32) - C(33)	1 526 (12)		
C(32) - C(34)	1,569 (19)		
C(34) - C(35)	1,266 (20)		
$(J_{J}) = (J_{J})$	1,200 (20)		

Dans les trois structures, la disposition générale des cycles est identique: jonction A/B, B/C, C/D trans. Les cycles A, B, et hémiacétalique sont toujours parfaitement chaise, comme le montre la Fig. 4. Par contre le cycle C n'adopte pas toujours la même conformation: dans les deux amoorastatines, il est franchement bateau, alors que dans l'aphanastatine, ce cycle s'éloigne de la forme bateau pour adopter une forme bateau croisée. On constate donc qu'on peut avoir des conformations différentes, l'une bateau, l'autre bateau croisé malgré une identité de substituants. D'autre part, l'amoorastatine et l'hydroxy-12 amoorastatine ont des substituants différents mais elles cristallisent dans le même groupe spatial et on n'observe aucun changement de conformation des cycles. Tout ceci est manifestement dû à l'empilement des molécules dans le cristal.

Dans les trois structures le cycle D adopte une conformation enveloppe comme il est montré dans les Figs. 1, 2 et 3. Si on détermine les plans moyens passant par les atomes C(13), C(14), C(15), C(16) et si on calcule le déplacement de l'atome C(17) par rapport à ces plans, on obtient les résultats suivants:

	Aphanastatine	Amoorastatine	Hydroxy-12 amoorastatine
C(13)	0,007 (6) A	0,015 (5) A	0,011 (8) A
C(14)	-0,012 (6)	-0,027 (5)	-0,019 (8)
C(15)	0,016 (7)	0,041 (6)	0,029 (10)
C(16)	-0,010 (7)	-0,024 (6)	-0,016 (10)
C(17)	-0,581 (6)	-0,642 (5)	-0,634 (8)
A	0,0780	0,4125	0,4284
В	-0,7725	0,4205	-0,4382
С	-0,6302	0,8081	-0,7902
D	-17,3647	-0,9710	-3,7474.
C D	-0,6302 -17,3647	-0,8081 -0,9710	-0,7902 -3,7474.

A, B, C, D sont les coefficients de l'équation du plan: Ax + By + Cz + D = 0.

La lecture de ce tableau met en évidence la forme enveloppe du cycle D de ces structures.

La valeur de l'angle dièdre formé par le plan du cycle époxyde C(14)-O-C(15) et celui des atomes C(13) à C(16) du cycle D est de 77, 105, 106° respectivement pour l'aphanastatine, l'amoorastatine et l'hydroxy-12 amoorastatine.

Le cycle furanne s'oriente lui, presque perpendiculairement au cycle D. Les valeurs de l'angle de torsion C(13)-C(17)-C(20)-C(21) sont de -118, -96 et -93° pour l'aphanastatine, l'amoorastatine et l'hydroxy-12 amoorastatine.

Les groupements acétate sont plans et s'orientent perpendiculairement au plan moyen du cycle porteur. Cette disposition particulière, où l'oxygène du carbon-

(7)
(7)
(6)
(7)

(7)
(7)
(6)
(7)
(6)
(7)
(6)
(7)
(6)
(6)

(6) (7) (7) (7) (7)

(7) (6) (7) (7)

(6) (7)

(7)
(7)
(6)
(7)

(6) (6)

(6)

(6) (6) (7) (7) (8) (8) (7)

(7)
(7)
(7)
(7)
(7)
(7)
(7)
(7)
(7)
(7)
(8)

(6) (7) (7)

(6) (8)

(6) (8)

(7)

(7)

(8) (8) (7) (9) (9)

(9)

(9) (9) (9)

Tableau 4. Angles de valence (°) avec écarts-type entre parenthèses de (a) l'aphanastatine, (b) l'amoorastatine, (c) l'hydroxy-12 amoorastatine

	(<i>a</i>)	<i>(b)</i>	(<i>c</i>)
$C(2)-C(1) \cdot C(10)$	112,4 (5)	113,9 (4)	115,5
C(2)-C(1)-O(1)	107,4 (4)	110,1 (4)	111,1
C(10) - C(1) - O(1)	109,2 (4)	111,2 (4)	110,7
C(1) - C(2) - C(3) C(1) - C(2) - O(3)	114,3(5)	114,0 (4)	115,0
C(3) - C(2) = O(3)	113,0(5)		
C(2)-C(3)-C(4)	114.2 (5)	114.2 (4)	113.7
C(2)-C(3)-O(4)	106,2 (5)	105,5 (4)	106,0
C(4)-C(3)-O(4)	109,8 (5)	107,2 (4)	105,8
C(3) $C(4)-C(5)$	109,5 (5)	107,9 (4)	108,9
C(3) - C(4) - C(28) C(3) - C(4) - C(28)	109,1 (5)	111,0 (4)	111,0
C(5) = C(4) = C(28)	109,2(3) 108.4(5)	109,0 (4)	109,5
C(5)-C(4)-C(29)	112.4 (5)	112.1(4)	112.7
C(28)-C(4)-C(29)	108,3 (5)	107,4 (4)	108,0
C(4) - C(5) - C(6)	114,4 (5)	114,7 (4)	114,6
C(4)-C(5)-C(10)	108,0 (4)	109,8 (4)	110,8
C(6) - C(5) - C(10)	114,5 (5)	112,9 (4)	113,5
C(5) = C(0) - C(7) C(6) = C(7) = C(8)	112,2(5) 110,7(5)	111,4 (4)	111,3
C(6) - C(7) - O(9)	109.1 (5)	110.3(4)	112.9
C(8) - C(7) - O(9)	110,8 (5)	108,8 (4)	109,7
C(7)-C(8)-C(9)	107,3 (5)	108,7 (4)	107,9
C(7)-C(8) $C(14)$	110,6 (5)	110,5 (4)	112,1
C(7) = C(8) = C(30) C(9) = C(8) = C(14)	109,1 (5)	108,7 (4)	108,3
C(9) = C(8) = C(14) C(9) = C(8) = C(30)	108,2(5) 113.7(5)	107,5 (4)	108,5
C(14) - C(8) - C(30)	107,9 (5)	108.9 (4)	107.3
C(8)-C(9)-C(10)	118.0 (5)	118,4 (4)	119,1
C(8)-C(9)-C(11)	111,1 (5)	107,0 (4)	107,8
C(10) = C(9) = C(11) C(10) = C(10) = C(5)	115,6 (5)	117,1 (4)	117,6
C(1) = C(10) = C(3) C(1) = C(10) = C(9)	100,4 (4)	107,9(4)	108,4
C(1) C(10) - C(19)	107.9 (4)	107,8 (4)	109,1
C(5)-C(10)-C(9)	108,5 (4)	107,7 (4)	108,0
C(5)-C(10)-C(19)	112,9 (4)	109,4 (4)	108,4
C(9)-C(10)-C(19)	111,0 (4)	116,0 (4)	116,0
C(9) = C(11) = C(12) C(9) = C(11) = O(13)	110,2 (5)	115,8 (4)	11/,5
C(12) $C(11)=O(13)$	123,0(5)	123,0 (4)	124,0
C(11)-C(12)-C(13)	111,2 (5)	112,5 (4)	113,1
C(11)-C(12)-O(12)	109,0 (5)		111,7
C(13)-C(12)-O(12)	117,1 (5)		115,0
C(12) = C(13) - C(14) C(12) - C(13) - C(17)	105,0 (5)	108,8 (4)	106,3
C(12) = C(13) = C(17) C(12) = C(13) = C(18)	110,3(5)	113,4 (4)	110,0
C(14)-C(13)-C(17)	101,2 (5)	101.0 (4)	102.7
C(14)-C(13)-C(18)	112,6 (5)	112,1 (4)	112,6
$C(17) - C(13) \cdot C(18)$	107,8 (5)	107,1 (4)	107,5
C(8) - C(14) - C(13)	119,6 (5)	119,8 (4)	119,6
C(8) = C(14) = C(15) C(8) = C(14) = O(10)	129,4 (5)	130,3(5) 1120(4)	129,5
C(13) - C(14) - C(15)	108.6 (5)	106.5(4)	107.4
C(13)-C(14)-O(10)	111,3 (5)	113,0 (4)	113,3
C(15)-C(14)-O(10)	59,3 (4)	59,8 (4)	59,9
C(14) - C(15) - C(16)	108,9 (6)	110,2 (5)	110,0
C(14) = C(15) = O(10) C(16) = C(15) = O(10)	60,2 (4) 109 1 (6)	60,2 (4)	60,8
C(15) - C(16) - C(17)	104.7(6)	109,3(3) 102,2(5)	101.4
C(13)-C(17)-C(16)	102,9 (5)	102,7 (4)	101.9
C(13)-C(17)-C(20)	118,4 (6)	117,4 (4)	120,2
C(16)-C(17)-C(20)	113,0 (6)	116,9 (5)	114,3
C(10)-C(19)-O(6) C(17)-C(20)-C(21)	113,4 (5)	112,8 (4)	112,6
C(17) - C(20) - C(21) C(17) - C(20) - C(22)	120,7(7)	128,8 (0)	130,1
C(21)-C(20)-C(22)	104.5 (8)	104.0 (6)	103.4
C(20)-C(21)-O(11)	108,7 (7)	110,0 (6)	112,2
C(20)-C(22)-C(23)	110,1 (10)	110,5 (6)	110,0
C(22) = C(23) = O(11)	108,0 (10)	108,1 (6)	107,5
C(25) = C(24) = O(1) C(25) = C(24) = O(2)	111,1 (5)		
	· • · · · · · · · · · · · · · · · · · ·		

Tableau 4 (suite)

	(<i>a</i>)	(b)	(c)
O(1) - C(24) - O(2)	123,8 (6)		
C(27)-C(26)-O(4)	109,1 (7)	111.0 (5)	108.9 (8)
C(27) C(26)-O(5)	128,9 (8)	125,0 (6)	126,4 (9)
O(4) - C(26) - O(5)	122,0 (7)	123,9 (6)	124.7 (9)
C(4)C(28)-O(6)	112,8 (5)	110,4 (4)	110,6 (7)
C(4)C(28)-O(7)	107,3 (5)	109,3 (5)	109,2 (7)
O(6)-C(28)-O(7)	105,1 (4)	107,6 (5)	105,1 (7)
C(32)-C(31)-O(7)	109,5 (6)		
C(32)-C(31)-O(8)	127,1 (6)		
O(7)- C(31)–O(8)	123,4 (6)		
C(31)-C(32)-C(33)	111,1 (7)		
C(31)-C(32)-C(34)	107,5 (8)		
C(33) - C(32) - C(34)	115,9 (8)		
C(32)C(34)C(35)	116,4 (13)		
C(1)O(1)C(24)	119,1 (4)		
C(3)-O(4)-C(26)	118,5 (5)	119,0 (4)	118,6 (7)
C(19)-O(6)-C(28)	112,0 (4)	113.8 (4)	112.9 (6)
C(28) O(7)C(31)	117,4 (5)		
C(14) - O(10) - C(15)	60,5 (4)	60.0 (4)	59.3 (6)
C(21)-O(11)-C(23)	108,3 (8)	107,4 (6)	106,9 (9)

yle se place en face du proton porté par l'atome de carbone du cycle, se retrouve dans les trois structures.

Les angles dièdres entre les plans $CH_3-C(=O)-O$ et O-C-H sont donnés ci-dessous:

	Angle dièdre $(\sigma) = 2^{\circ}$	$d(O\cdots H)$
Aphanastatine $O(1)C(24)$	10	2 331 (4) Å
O(4)C(26)	15	2,307 (5)
Amoorastatine O(2)C(26)	11	2,428 (4)
Hydroxy-12 amoorastatine O(2)C(26)	11	2,446 (6).

Liaison hydrogène intramoléculaire

Dans les deux amoorastatines il existe une liaison hydrogène entre O(1) et O(2). Pour l'amoorastatine: O(1)...O(2) = 2,953 (5) Å, H[O(1)]...O(2) =2,077 (4) Å, O(1)-H-O(2) = 126,2 (2)°. Pour l'hydroxy-12 amoorastatine: O(1)...O(2) = 3,018 (8) Å, H[O(1)]...O(2) = 2,173 (6) Å, O(1)-H-O(2) = 120,5 (3)°.

Edifice cristallin

Les longueurs des liaisons courtes intermoléculaires figurent dans le Tableau 5.

Tableau 5. Longueurs des liaisons courtes intermoléculaires (Å)

Aphanastatine		Amoorastat	ine	Hydroxy-12 amo	orastatine
O(9)···O(12)	2,919 (6)	$O(5) \cdots O(9)$	2,871 (6)	O(6)···O(10)	2,914 (9)
$\frac{1}{2} - x, 2 - y, \frac{1}{2} + z$		$2-x, \frac{1}{2}+y, 1$	-z	x - 1, y,	Ζ
O(3)···O(8)	2,884 (6)	$O(6) \cdots O(W)^*$	2,839 (6)	$O(6)\cdots O(W)$	2,811 (9)
$1 - x, \frac{1}{2} + y, \frac{3}{2} - z$				$1 - x, \frac{1}{2} + \frac{1}{2}$	y, 1 - z
• •	-	$O(W) \cdots O(1)$	2,824 (6)	$O(W) \cdots O(1)$	2,854 (9)
		x - 1, y	, <i>Z</i>	$-x, \frac{1}{2} + y,$	1 - z
		$O(W) \cdots O(3)$	2,811 (6)	$O(W) \cdots O(3)$	2,836 (10)
		$1-x, \frac{1}{2}+y,$	2 - z	x,y+1,	z + 1

* La lettre W indique la molécule d'eau.

La molécule d'eau est liée par le même schéma de liaisons hydrogène dans les deux molécules d'amoorastatine:

$$O(6) \longrightarrow O(W) \stackrel{O(1)}{\searrow} O(3).$$

Dans l'aphanastatine et l'hydroxy-12 amoorastatine il existe une liaison hydrogène entre l'hydroxyle porté par le carbone 7 et celui porté par le carbone 12 d'une autre molécule.

Les auteurs tiennent à remercier Mme J. Polonsky pour les fructueuses discussions échangées au cours de ce travail.

Références

- BRAUN, B. P., HORNSTRA, J. & LEENHOUTS, J. L. (1969). *Philips Res. Rep.* 24, 85-118.
- DOYLE, P. A. & TURNER, P. S. (1968). Acta Cryst. A24, 390-397.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.
- POLONSKY, J., VARON, Z., ARNOUX, B., PASCARD, C., PETTIT, G. R. & SCHMIDT, J. H. (1978). J. Am. Chem. Soc. 100, 7731-7733.
- POLONSKY, J., VARON, Z., ARNOUX, B., PASCARD, C., PETTIT, G. R., SCHMIDT, J. M. & LANGE, L. M. (1978). J. Am. Chem. Soc. 100, 2575.
- POLONSKY, J., VARON, Z., MARAZANO, C., ARNOUX, B., PETTIT, G. R., SCHMIDT, J. M. & OCHI, M. (1979). *Experientia*, **35**, 987–989.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.

Acta Cryst. (1980). B36, 2715–2719

Le $\left[\alpha - (p - M \acute{e} thoxyphényl - 5 m \acute{e} thylthio - 3 thiényl - 2)$ benzylidène $\left[-2 \text{ Propanedinitrile}\right]$

PAR FRANÇOIS MATHIEU

Institut des Sciences de la Matière et du Rayonnement, Université de Caen, 14032 Caen CEDEX, France

(Reçu le 23 avril 1979, accepté le 27 mai 1980)

Abstract

C₂₂H₁₆N₂OS₂, $M_r = 388 \cdot 51$, is triclinic, P1, with $a = 13 \cdot 451$ (3), $b = 7 \cdot 854$ (2), $c = 10 \cdot 376$ (3) Å, $\alpha = 109 \cdot 21$ (2), $\beta = 112 \cdot 23$ (2), $\gamma = 77 \cdot 11$ (2)°, Z = 2, $d_m = 1 \cdot 35$, $d_x = 1 \cdot 356$ Mg m⁻³, $\mu = 0 \cdot 253$ mm⁻¹ | λ (Mo $K\alpha$)|. The structure was solved by the heavy-atom method and refined by least-squares calculations to R = 0.049 and $R_w = 0.048$ for 3700 reflections. Delocalization of the π electrons over the 2-methylene-propaned initrile group was observed. The value of the dipolar moment | $\mu = (23 \cdot 3 \pm 0.7) \times 10^{-30}$ Cm (7.0 ±

0567-7408/80/112715-05\$01.00

0.2 D)| shows that the meso-ionic character approximates that of malononitriles conjugated with aryl groups.

Introduction

La condensation d'ions méthylthio-3 dithiole-1,2 ylium sur des éthylidène-2 propanedinitriles dans l'acide acétique en présence de pyridine conduit à des [(dithiole-1,2 ylidène-3)-2 éthylidène]-2 propanedinitriles (A) (Catel & Mollier, 1976); l'étude cristallographique

© 1980 International Union of Crystallography